透過您的圖書館登入
IP:18.118.2.15
  • 學位論文

氫氧化鋁粉末特性對鋁與水化學產氫速率的影響

The influence of Al(OH)3 powder characteristics on the hydrogen generation rate from Al/water chemical reaction

指導教授 : 王宏文

摘要


本研究利用四種方法生成氫氧化鋁與商用氫氧化鋁,並且利用於鋁/水系統產氫,實驗證明當氫氧化鋁非多孔材料且粒徑越小時修飾鋁/水產氫效果越好,其中以硝酸鋁所生成之氫氧化鋁修飾鋁/水產氫效果最好。 第二部份實驗利用Arrhenius equation理論套用Shirking Core Model求得活化能,證實氫氧化鋁皆具有催化活性,純鋁的活化能為158.18 kJ/mol,氫氧化鋁催化效果最佳的是由硝酸鋁所生成(33.98 kJ/mol),而最差的是由鋁所生成(119.41 kJ/mol),透過這相對的關係可以印證當氫氧化鋁粒徑大小不同,造成反應速率差異的現象為每種氫氧化鋁在鋁/水產氫系統中的催化效果不同。 最後以Al:Al(OH)3:H2O=3:15:50為最佳參數,此反應條件在十分鐘內產氫效率高達95%以上,將此應用於燃料 電池上,所產生的氫氣確實能使燈泡發光。從鋁與水的反應中,本研究揭露出一種快速而簡易的產氫方式。

並列摘要


Effect of Al(OH)3 on the hydrogen generation from Al/water system is evaluated. Four synthesized and one commercial Al(OH)3 powders are employed to facilitate the hydrogen generation from Al/water system at room temperature. It is found that the product derived from Al(NO)3 exhibits the highest catalytic effect and exerts the best effect on hydrogen generation. All activation energies were calculated using Arrhenius equation. The activation energies obtained for the pure aluminum is 158.18 kJ/mol. The best catalytic effect is obtained from Al(NO3)3, whose activation energy is only 33.98 kJ/mol. The weakest catalytic effect is obtained from Al-reacted, whose activation energy is 119.41 kJ/mol. The calculation of activation energy provides an insight of the catalytic effect of particle size on Al/water system. For the best combination of this study, Al: Al(OH)3: H2O = 3:15:50, its hydrogen production efficiency achieves 95% within ten minute. When the hydrogen generated was applied to a fuel cell as a power source, it indeed turns on the bulb. The present study has discovered a fast and simple way to generate hydrogen gas from Al/water system.

參考文獻


3. J. Ladebeck, J. Wagner. Catalyst development for water-gas shift. Handbook of fuel cells. Wiley, Ch.16.
4. F. Joensen, J. Rostrup-Nielsen. Conversion of hydrocarbons and alcohols for fuel cells. J. Power Sources (2002), 105, 195–201
5. Y.S. Oh, H.S. Roh, K.W. Jun, Y.S. Beak. A highly active catalyst, Ni/Ce-ZrO2/-Al2O3,for on-site H2 generation by steam methane reforming : pretreatment effect. Int. J. Hydrogen Energy (2005), 28, 1387–1392
6. S.T. Lin, Y.H. Chen, C.C. Lin, Y.C. Liu, C.H. Lee. Modelling an experimental methane fuel processor. J. Power Sources (2005), 148, 43–53
7. L. F. Brown. A Comparative Study of Fuels for On-Board Hydrogen Production for Fuel-Cell-Powered Automobiles, Int. J. Hydrogen Energy (2001), 26(4), 381–397.

被引用紀錄


林宗德(2016)。太陽能及化學產氫及氫氣之應用〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201600958
陳東昇(2016)。微波水熱合成氧化鋅奈米粉體之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201600771
溫于傑(2016)。氫氧化鋁粉對鋁與水化學產氫速率的影響〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201600508
魏志宇(2015)。鋁水快速產氫及添加劑氫氧化鋁之影響〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201500589
秦明賜(2014)。鋁/水系統快速產氫之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201400662

延伸閱讀