透過您的圖書館登入
IP:18.227.102.34
  • 學位論文

氮化銦鎵/氮化銦量子井與奈米材料的能量轉移

Efficient energy transfer from InGaN quantum wells to Nanomaterials

指導教授 : 沈志霖

摘要


本文利用光激螢光光譜與時間解析光激螢光光譜,研究氮化銦鎵/氮化鎵量子井與奈米材料之間非輻射的能量轉移。第一部分,使用氮化銦鎵/氮化鎵量子井為施子、奈米銀粒子為受子。在室溫中,利用時間解析光激螢光光譜研究其載子生命期的變化,改變施子與受子的距離(d),瞭解螢光共振能量轉移與施子與受子的距離關係成倒數三次方反比(d^-3),其中最大的能量轉移效率高達83%。第二部分,改變受子為氧化石墨烯,發現塗佈過後的螢光生命期明顯的衰減且施子與受子的能量轉移過程是利用二維偶極磁矩-二維偶極磁矩相互作用,並瞭解此螢光共振能量轉移與施子與受子的距離關係成倒數二次方反比(d^-2)且量測出載子生命期得到最大能量轉移效率達83%。

並列摘要


In this thesis, we study the nonradiative energy transfer from InGaN/GaN quantum wells to nanomaterials using photoluminescence(PL) and time-resolved PL (TRPL) measurements. In the first part , We use InGaN/GaN quantum wells as donors and silver nanoparticles as acceptors. The distance (d) dependence of energy transfer rate is found to be proportional to d-3 from TRPL study. The maximum energy-transfer efficiency of this energy transfer system can be as high as 83 %. In the second part of the thesis, graphew oxide instead of the silver nanoparticle was used as acceptor. A pronounced shortening of the PL decay time in the InGaN quantum well was observed when interacting with graphene oxide. The nature of energy transfer process has been analyzed and we find the energy-transfer efficiency depends on the d-2 separation distance ,which is dominated by the layer-to-layer dipole coupling. In this case, the maximum energy-transfer efficiency of this energy transfer system is about 82 %.

參考文獻


[1.] T. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Annalen der Physik, 2, 55 (1948).
[2.] J. R. Lakowicz, “Principle of Fluorescence Spectroscopy”, 2nd ed., (New York: Kluwer Academic Plenum) (1999)
[3.] V. M. Agranovich, Y. N. Gartstein, and M. Litinskaya, “Hybrid Resonant Organic–Inorganic Nanostructures for Optoelectronic Applications,” Chem. Rev. 111, 5179 (2011).
Lomascolo, Appl. Phys. Lett. 85, 4169 (2004)
Millar 162, 159 (2002)

延伸閱讀