透過您的圖書館登入
IP:3.148.102.90
  • 學位論文

氣體反壓射出成型結晶與非結晶高分子產品機械性質之影響

Influence of Gas Counter Pressure on Mechanical Properties of Injection Molded Amorphous and Crystalline and Polymer Parts

指導教授 : 陳夏宗

摘要


射出成型的充填過程雖然短暫卻極為重要,因此控制充填過程中熔膠流動的技術持續地研究發展。無論傳統射出成型或是革新射出成型,熔膠波前的噴泉流效應是必然的現象,噴泉流效應也自然附帶產生速度、剪切率與分子配向的差異分布情況,進一步決定成型品的品質,因此如何能有效控制熔膠波前並影響熔膠充填流動的成型條件,將是關鍵的進展。目前氣體反壓技術主要應用於超臨界流體微細發泡射出成型控制發泡效果,尚乏在傳統射出成型領域的應用,反壓的高壓氣體可以直接與熔膠波前接觸的特點,期望利用此特點,在傳統射出成型中能簡單地達成波前行為的控制,拓展氣體反壓技術應用範圍。 研究顯示,氣體反壓對熔膠流動產生阻力,故在應用氣體反壓技術必須確保實際射出速度一致,以穩固成型參數條件的比較基準。本研究以厚度1.2mm之拉伸試片,不同塑膠材料(PP、ABS、ABS添加30wt%玻璃纖維),在有、無氣體反壓控制(0、50、75、100bar)的狀態下,探討拉伸強度的變化與結晶性塑膠材料的結晶度變化;研究結果顯示,氣體反壓壓力提升對於傳統射出成型產生的效果包括減緩熔膠波前的噴泉效應、增加拉伸強度與結晶性塑膠材料的結晶度。在拉伸強度部份,不論是結晶性(PP)與非結晶性(ABS)塑膠材料都隨著反壓壓力增加至100bar分別增加4.78%與4.51%,而ABS添加30wt%玻璃纖維則受反壓影響纖維配向關係,降低了8.34%。

關鍵字

拉伸強度 氣體反壓 結晶度

並列摘要


Filling time is short but critical in injection molding cycle. Therefore method and technology of controlling melt flow is developing. Fountain flow effect occurs in both conventional injection molding (CIM) and novel injection molding. It will accompany with differential distribution of velocity, shear rate and orientation, which will affect quality of molding parts. Knowhow of controlling melt flow efficiently to affect molding condition of filling will be a key progress. So far, gas counter pressure (GCP) technology mainly applied on microcellular foam injection molding but lack in conventional injection molding. Expecting to take advantage of character that high pressure gas of GCP may directly contact with melt front, in order to achieve controlling melt front behavior and expand application field of GCP. Research shows GCP will cause flow resistance so that consistent of real injection speed need to be confirmed in order to setup a steady compare level of processing parameter condition. In this study, tensile strength and crystallinity of thickness 1.2mm dog bone produced by different plastic (PP, ABS, ABS with 30wt% glass fiber) under various GCP (0, 50, 75, 100bar) will be discuss. Results shows effects on CIM with increasing GCP including ease fountain flow effect, increasing tensile strength and crystallinity. For tensile strength, crystalline plastic (PP) and amorphous plastic (ABS) increase 4.78% and 4.51% under 100bar GCP; in other hand ABS with 30wt% glass fiber decrease 8.34% because of orientation by effect of GCP.

參考文獻


28. 林鈺婉,“超臨界微細發泡射出成型反壓機制建立並應用於流變特性研究”,私立中原大學機械工程學系博士學位論文(2009)。
30. 許評順,“模內氣體反壓與動態模溫機制應用於超臨界微細發泡射出成型發泡控制與表面品質影響之研究”,私立中原大學機械工程學系博士學位論文(2011)。
31. 施銘奕,“氣體反壓對於含碳纖維高分子複材射出成型過程纖維配向度及導電度之影響研究”,私立中原大學機械工程學系博士學位論文 (2012)。
32. 黃松煒,“氣體反壓對於射出成型流場特性/分子排向以及成型品品質影響之初步評估”,私立中原大學機械工程學系博士學位論文(2012)。
3. A. T. Balevski, et al., United States Patent 4092385 (1978).

被引用紀錄


陳珮蓉(2014)。充填反壓機制對殘留應力和光學成型品品質之影響〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201400593

延伸閱讀