透過您的圖書館登入
IP:18.116.234.46
  • 學位論文

水熱合成二氧化鋯/碳氣凝膠中孔洞奈米複合材料於有機染料移除之應用

Hydrothermal Synthesis of Mesoporous ZrO2/Carbon Aerogels Composites for the removal of Organic Dye

指導教授 : 林義峯

摘要


本研究使用水熱法180℃反應溫度,以氧氯化鋯及HMTA為反應物製備出二氧化鋯奈米顆粒,並以FE-SEM、XRD、TEM及BET等儀器,分析材料之特性。由於二氧化鋯奈米顆粒有嚴重聚集現象,使顆粒比表面積降低,而降低其對有機染料Rh B之吸附能力。為了克服此現象,於水熱過程中加入苯酚(phenol),使苯酚與HMTA水解生成甲醛進行高分子聚合反應,形成二氧化鋯/酚醛樹脂複合結構,並於氮氣環境下進行高溫鍛燒,將酚醛樹脂碳化形成碳氣凝膠,最後生成二氧化鋯/碳氣凝膠奈米複合材料,成功提升材料之比表面積且對有機染料之吸附效能高達98%以上。另外,於水熱合成二氧化鋯反應中添加酚能改變二氧化鋯晶體的結構,使單斜晶相之二氧化鋯轉變成較對稱之正方晶相結構,二氧化鋯晶相的改變對吸附有機染料Rh B之應用有相當大的幫助。最後,二氧化鋯本身也具有光觸媒特性,故將二氧化鋯/碳氣凝膠奈米複合材料進行光觸媒實驗,結果發現二氧化鋯不同晶相結構對光觸媒效果也不相同,以此結合材料同時吸附及光降解有機染料Rh B之反應,達到高效能移除染料Rh B之目標。

並列摘要


In this study, ZrO2 nanoparticles with monoclinic crystal structures were successfully prepared by using hydrothermal process at 180℃ for 24h. Owing to its aggregation, it is necessary to overcome the result of low surface area. The reactants are ZrOCl2 and Hexamethylenetetramine (HMTA), and HMTA was hydrolyzed into ammonia and formaldehyde under high temperature aqueous solution. Adding phenol in the hydrothermal process, phenol formaldehyde resins (PF) were synthetic polymers obtained by the reaction of phenol with formaldehyde.This experimental process produced ZrO2 / phenolic resin composites;the products were then through carbonization under nitrogen. Finally we got mesoporous ZrO2 / Carbon Aerogels composites. ZrO2 / Carbon Aerogels composites have high surface area and we also found that the more amounts of HMTA were added, the more tetragonal crystal structures of ZrO2 / Carbon Aerogels composites were generated. High surface area and tetragonal crystal structures of ZrO2 / Carbon Aerogels composites are cardinal points to increase the adsorption of Organic Dye. On the other hand, ZrO2 / Carbon Aerogels composites also were served as photocatalysts, degrading organic dye in photocatalytic reaction to enhance the removal of organic dye. Different crystal structures of ZrO2 / Carbon Aerogels composites have different results of photocatalytic reaction.

參考文獻


[1] R. P. S. Suri, J. Liu, D. W. Hand, J. C. Crittenden, D. L. Perram, and M. E. Mullins, “Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Water,” Water Environ. Res., vol. 65, pp. 665-673, 1993.
[6] O. Merka, V. Yarovyi, D. Bahnemann, and M. Wark, “pH-Control of the Photocatalytic Degradation Mechanism of Rhodamine B over Pb3Nb4O13,” J. Phys. Chem. C, vol. 115, pp. 8014-8023, 2011.
[7] M. Hema, and S. Arivoli, “Rhodamine B adsorption by activated carbon : Kinetic and equilibrium studies,” Indian J. Chem. Technol., vol. 16, pp. 38-45, 2009.
[9] L. Li, S. Liu, and T. Zhu, “Application of activated carbon derived from scrap tires for adsorption of Rhodamine B” J. Environ. Sci., vol. 22(8), pp. 1273-1280, 2010.
[10] T. A. Khan, S. Dahiya, and I. Ali, “Use of kaolinite as adsorbent : Equilibrium, dynamics and thermodynamic studies on the adsorption of Rhodamine B from aqueous solution” Appl. Clay Sci., vol. 69, pp. 58-66, 2012.

延伸閱讀