透過您的圖書館登入
IP:3.22.171.136
  • 學位論文

光固化型仿生超疏水壓克力/石墨烯奈米複合材料之製備及其性質探討

Preparation and Properties of UV-Curable Biomimetic superhydrophobic Graphene Nanocomposite Material Materials

指導教授 : 葉瑞銘

摘要


本論文以UV光固化反應,成功製備光固化型仿生超疏水壓克力/石墨烯奈米複合薄膜塗料,並進行結構的鑑定與物理性質的分析,以及電化學防腐蝕特性的測試。本研究主要分為二個部份: 第一部分為光固化型壓克力/石墨烯奈米複合材料,將含適量光起始劑的甲基丙烯酸甲酯(MMA)溶液,與不同比例的石墨烯確實分散後,再以UV光照射使其反應,成功製備出壓克力(PMMA)(聚甲基丙烯酸甲酯)/石墨烯奈米複合材料,採用傅立葉轉換紅外線光譜儀(FTIR)鑑定,並利穿透式電子顯微鏡(TEM)確定石墨烯的分散性,再以熱重分析儀(TGA)與接觸角量測其性質,並以氣體穿透分析儀(GPA)測量氣體透過率,循環伏特電位儀(CV)與交流阻抗模組(EIS)進行防腐蝕性能測試,得知添加層狀結構的石墨烯可有效增加壓克力的防腐蝕能力。 第二部分為光固化型仿生超疏水壓克力/石墨烯奈米複合材料,首先利用轉印方式複製新鮮千年芋(Xanthosomasagittifolium)的表面微結構,得到聚二甲基矽氧烷(PDMS)仿生模板,再將含適量光起始劑的甲基丙烯酸甲酯(MMA)/石墨烯溶液塗佈於冷軋鋼(CRS)上,將PDMS模板附壓其上,再以UV光照射使其進行反應固化,成功轉印製備出具仿生超疏水表面的壓克力/石墨烯薄膜;採用掃描式電子顯微鏡 (SEM)鑑定,發現複刻薄膜表面滿佈微米等級的乳突,且乳突上盡是奈米等級的皺摺,確切證實轉印出的壓克力/石墨烯表面微結構與千年芋幾乎完全相同,且導入仿生微結構使得壓克力/石墨烯塗層表面的接觸角 (Contact Angle)從80°上升至150°,接觸角大幅提升了70°,最後再利用循環伏特電位儀 (CV)、交流阻抗模組(EIS)對具仿生結構之壓克力/石墨烯薄膜進行防腐蝕測試,得知塗料俱仿生超疏水結構對防腐蝕能力大大優於無微結構之壓克力/石墨烯,進而確信仿生超疏水結構對塗料防腐蝕性能有極大的貢獻。

並列摘要


In this research, successfully provisioned UV-curable biomimetic super-hydrophobic acrylic / graphenenano-composite coatings.Then to study structural identification and analysis of physical properties, and electrochemical corrosion characteristics. This research is divided into twoparts: The first part is UV-curing PMMA / graphenenano-composite material.Thephotoinitiator-containing methyl methacrylate (acrylic) was added the three ratios of the acid-modified graphite.Indeeddispersed,thenuseUV-reactionsuccessfullypreparedmethyl methacrylate /graphene nano-composites. Using Fourier transform infrared spectroscopy (FTIR) identified, and by Thermogravimetry Analysis(TGA), Transmission Electron Microscopy(TEM), Scanning Electron Microscope(SEM) to analysis the properties. Use the Gas Permeability Analyzer(GPA) to know Gasseparation rate.This anti-corrosionwas estimated byCyclicvoltammetry(CV) and AC impedance Module (EIS).Then we know that Increase the percentage of graphite also increase PMMA anti-corrosion. The second part is bionic super-hydrophobic photo-curable printing. First to use the copy mode Millennium fresh taro (Xanthosomasagittifolium) surface structure obtained polydimethylsiloxane (PDMS) Bionic motherboard. Containing photoinitiator methyl methacrylate / graphite dilute solution was coated on cold rolled steel (CRS). Then pressure of the PDMS motherboard attached on it.Using UV-curingto prepare aacrylic / graphite sample of bionic super-hydrophobic surface,successful.Anduseing scanning electronmicroscopy (SEM),foundthe film surfacecoveredwithengravedmastoid of micronlevel. And on the mastoidare full ofnanometer-scalefolds.Exact confirmed acrylic surface structure is the same with the Millennium taro.Because the microstructure intoacrylic, the surface contactangle(CA)rosefrom80to150. This contact angledramatically improves the70. Finally,the useaCyclic voltammetryinstrument(CV), AC impedance Module (EIS)with abionicstructureofpoly(methyl methacrylate)coatingforcorrosionteststhat the corrosion capacity of bionic super-hydrophobic structural is better than without the microstructure acrylate.Thusconvincedbionicsuper-hydrophobicstructure on thecorrosionresistancehavegreatcontribution.

參考文獻


[36] 彭志偉,仿生超疏水材料與電活性高分子材料的製備、鑑定及其防蝕與感測性質研究,私立中原大學化學所博士論文,2012
[2] 馬祥泰,以紫外光聚合法合成高透明壓克力高分子與中孔洞氧化矽復合材料之研究,國立成功大學化學所碩士論文,2006
[8] R. Phillips, J.O.C.C.A., 61,233 (1978)
[10] 吳丁凱,光硬化型樹脂的發展動向,工業技術研究院化學工業研究所碩士論文,1987
[17] 林以莉,製備室溫硬化型電活性環氧樹脂之仿生疏水防蝕塗料與可逆摻雜及奈米石墨薄片聚胺基甲酸酯發泡體及其性質探討,私立中原大學化學所碩士論文,2012

延伸閱讀