透過您的圖書館登入
IP:3.145.15.7
  • 學位論文

MFI型沸石/幾丁聚醣複合薄膜應用於醇類水溶液之滲透蒸發分離

MFI-type Zeolite/CS Membranes for Pervaporation Separation of Water/Alcohols Mixture

指導教授 : 林義峰

摘要


在過去文獻中,許多研究學者將無機粒子混摻入高分子中,將之製備成有機-無機複合薄膜(mixed matrix membranes, MMMs),使膜具有無機以及有機材料優點,並且用在90 wt% 乙醇水溶液以及90 wt% 正丁醇水溶液滲透蒸發脫水上。本研究使用兩種不同粒子大小的silicate-1沸石與商業用的ZSM-5沸石,此類型沸石具有MFI型沸石的結構,加入幾丁聚醣(Chitosan, CS)中,並且加入適量的交聯劑,刮製成複合薄膜,並且用在滲透蒸發之醇類脫水上。由於沸石顆粒具有5 Å大小的孔洞,較水分子大上許多,使通量能有所提升,藉由有機與無機之間的作用力,也使薄膜之中的高分子鏈固化程度提高,使膜的選擇性提升。在乙醇及正丁醇兩種水溶液之滲透蒸發脫水中,都以顆粒大小為600 nm的silicate-1沸石且添加量為0.6 wt%時具有較佳的滲透蒸發分離係數(Pervaporation separation index, PSI),在25 ℃的乙醇水溶液之滲透蒸發脫水實驗中,通量以及選擇比分別為452 g/m2h以及545,而25 ℃的正丁醇水溶液之滲透蒸發脫水實驗中,通量以及選擇比分別為841 g/m2h以及1286。 綜合以上的結果發現粒子的添加有效使CS薄膜的性能提升,在通量方面,加入MFI型沸石的粒子可以藉由粒子的孔洞使通量上升,在選擇性方面,加入適量的交聯劑能使有機鏈段固化使選擇比提升,而有機與無機之間的作用力也能使膜較為緻密,使膜在選擇性上能有較好的結果。

關鍵字

滲透蒸發 沸石 幾丁聚醣 薄膜

並列摘要


The concept of mixed matrix membrane (MMMs) was first proposed by Kulprathipanjaet al. and many works thereafter had been dedicated to achieve the optimal combination of the inorganic particles and polymeric materials. The MMMs has the advantages of inorganic and organic materials. In this study, we successfully prepare MFI/chitosan membranes to dehydration of water/ethanol and water/1-butanol solutions by pervaporation. The MFI type zeolites were including silicate-1(2 μm), silicate-1(600 nm) and ZSM-5. When loading content with 0.6 wt% of silicate-1(600 nm) has the optimum value, the separation factor and flux are 545 and 452 g m-2 h-1 at ethanol/water system. The separation factor and flux are 1286 and 841 g m-2 h-1 at 1-butanol/water system. Silicate-1(600 nm)/CS MMMs showed good flux and separation factor as compared with another two MMMs. 0.6 wt% Silicate-1(600 nm)/CS MMMs have the best performance, and the PSI value is 887 kg m-2 h-1, which is five times with the CS membranes at 25 ℃ of 1-butanol/water system.

並列關鍵字

pervaporation zeolite chitosan membrane

參考文獻


[19] 蘇郁蕙, 賴君義, “幾丁聚醣混成膜中無機材成份對滲透蒸發效能之影響”中原大學碩士論文 (2004)
[3] C. S. Cundy and P. A. Cox, “The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism,” Microporous and Mesoporous Materials, 82 (2005) 1–78.
[7] A. Tavolaro and E. Drioli, “Zeolite membranes,” Advance Materials, 11 (1999) 975-996.
[9] R. E. Morris and S. J. Weigel, “The synthesis of molecular sieves from non-aqueous solvents,” Chemical Society Reviews, 26 (1997) 309-317.
[10] E. R. Parnham and R. E. Morris, “Ionothermal synthesis of zeolites, metal–organic frameworks, and inorganic–organic hybrids,” Accounts of Chemical Research, 40 (2007) 1005–1013.

延伸閱讀