透過您的圖書館登入
IP:18.221.140.111
  • 學位論文

應用於生物與工業材料的高速及高靈敏度光學斷層造影系統

High-speed and high-sensitivity optical tomography systems for applications in biological and industrial materials

指導教授 : 許怡仁

摘要


本研究主要在整合現有的干涉技術和光延遲線技術以提高在工業與生物材料檢測的準確度和效率。根據不同的檢測目標和需求發展出三種光學干涉造影系統,分別為高靈敏度表面輪廓儀、高靈敏度多界面輪廓儀與快速免掃描空間域光學同調斷層攝影術。   這三種造影系統的核心光學架構為麥克森干涉儀,並分別使用同調光源及低同調光源進行表面形貌及內部結構的量測。高靈敏度表面輪廓量測系統除了麥克森干涉儀,系統中額外配置了一馬赫-策德爾干涉儀作相位補償,這個補償機制使得系統的縱向靈敏度可以達到0.64奈米。基於此系統我將同調光源替換成低同調光源並且大幅提高光延遲線的掃描行程,使得系統可以量測高精度內部結構,其縱向靈敏度可以達到11.73奈米。最後,為了提高量測速度用以量測生物材料,我發展了免掃描空間域光學同調斷層攝影系統。此系統架構相當緊湊而且可以提供即時和高解析度的二維斷層造影,其縱向解析度為2.2微米,在可攜式醫療器材的發展上具有很高的潛力。

並列摘要


My study is devoted to integrating the current interference technology and optical delay line mechanism to improve the accuracy and efficiency of the inspection of industrial and biological materials. According to different materials and demands, I proposed three optical interference imaging systems, termed high-sensitivity surface profilometry, high-sensitivity multiple interfaces profilometry and high-speed non-scanning spatial-domain optical coherence tomography, respectively.  The core optical configuration of these three imaging systems is the Michelson interferometer. I demonstrated the measurement of surface morphology and internal structure of materials using coherent and low-coherence light sources, respectively. In addition to the Michelson interferometer in the high-sensitivity surface profiler system, I additionally configure a Mach-Zehnder interferometer for phase compensation. The axial sensitivity of this system is examined to be 0.64 nm. Based on this system, I replaced the coherent light source with a low-coherence light source and significantly increased the scanning range of the optical delay line. Therefore, the system can measure high-precision internal structures with an axial sensitivity is examined to be 11.73 nm. Lastly, in order to increase the measurement speed for biological materials, I proposed a non-scanning spatial-domain optical coherence tomography system. This system has a compact architecture and provides real-time and high-resolution tomographic imaging. The axial resolution of this system is examined to be 2.2 μm. It has high potential in the development of portable medical devices.

參考文獻


Reference
1. P. K. Rastogi, M. Barillot, and G. H. Kaufmann, "Comparative phase shifting holographic interferometry," Applied Optics 30, 722-728 (1991).
2. H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, "Nanotubes as nanoprobes in scanning probe microscopy," Nature 384, 147-150 (1996).
3. B. Bhushan and O. Marti, "Scanning probe microscopy—Principle of operation, instrumentation, and probes," in Nanotribology and Nanomechanics (Springer, 2017), pp. 33-93.
4. H. Seiler, "Secondary electron emission in the scanning electron microscope," Journal of Applied Physics 54, R1-R18 (1983).

延伸閱讀