這篇論文分成兩個主要部份, 在第一部份中, 我們討論了“非常好覆蓋圖形獨立多項式的 單峰性和對數凹性”。我們證明了對於任意一個G*圖,當其骨架圖G的穩定性數α(G)不大於8時, 圖形G*的獨立多項式I(G*;x)具有單峰性。另外, 我們也證明了圖形K*2,n的獨立多項式具有 對數凹性及單峰性並擁有唯一的眾數。 在第二部份中, 我們討論了“一些連結網路的拓撲性質”。利用Li 和Peng 兩位學者所 介紹的共軛立方體(DC'n) 圖形之結構, 我們介紹了一個新的連結網路, 稱之為共軛立方延 伸網路(DCEN)。我們也進一步地探討了DCEN 的一些拓撲性質。精確地來說, 我們證 明了DCEN(G)保有了一些原來G圖的好性質, 如漢米爾頓連通性、全域三連通性, 以及通 過每邊的泛圈性, 我們也討論了DCEN(G)的容錯漢米爾頓性質。另外, 論文中也探究循環 圖G(n,4)的4-容錯漢米爾頓連通性以及交代群圖AGn的相互獨立漢米爾頓迴圈的存在性。
There are two main parts in this dissertation. In the first part, we study “Unimodality and log-concavity of independence polynomials of very well-covered graphs”. We show that the independence polynomial I(G*;x) of G* is unimodal for any graph G* whose skeleton G has the stability number α(G)<=8. In addition, we show that the independence polynomial of K*2,n is log-concave with a unique mode. In the second part, we investigate “Topological properties of some interconnection networks”. Using the structures of dual-cubes introduced by Li and Peng, we introduce a new interconnection work, called dual-cube extensive networks (DCEN). Furthermore, we study some topological properties of DCEN. More precisely, we show that DCEN(G) preserves some nice properties of G such as the hamiltonian connectivity, globally 3*-connectivity, and edge-pancyclicity, and also discuss the fault-tolerant hamiltonian property of DCEN(G). In addition, we investigate the 4-fault-tolerant hamiltonicity of circular graphs G(n,4) and the existence of mutually independent hamiltonian cycles of alternating group graphs AGn.