透過您的圖書館登入
IP:3.17.129.242
  • 學位論文

合成電活性胺基封端苯胺三聚體量產之實驗參數探討及其衍生之電活性環氧樹酯/石墨烯複合材料之合成及其防腐蝕性質之研究

Investigation in Experimental Parameter for scale-up of Amino-Capped Aniline Trimer and Derived Electroactive Epoxy/Graphene Composite Material Studies on Electrochemical Anticorrosion

指導教授 : 葉瑞銘

摘要


本碩士論文內容分為兩個部分:(一)有效提升胺基封端苯胺三聚體產率之實驗參數探討;(二)利用電化學法量測苯胺三聚體所衍生之電活性環氧樹酯/石墨烯之複合防腐蝕塗料的應用性。 首先,第一部分是利用傳統氧化偶合一步法合成胺基封端苯胺三聚體,並且基於往後放大製程量產應用之可能性,探討如何改變多種實驗參數以有效提升胺基封端苯胺三聚體之產率。 本部份實驗重點主要以改變七種實驗參數(如:同一種酸性溶液(如:鹽酸)不同pH酸鹼值、不同種水溶液(如:鹽酸、硫酸、硝酸及水)、反應溫度高低、反應時間長短、使用氧化劑種類、氧化劑與反應單體之莫耳比例、反應單體之濃度) 做為主要探討條件。 其一系列條件合成後之胺基封端苯胺三聚體產物皆以傅利葉轉換紅外線光譜儀(FT-IR)、核磁共振光譜儀(NMR)及質譜儀(MASS)鑑定化學結構以證實合成之產物確實為胺基封端苯胺三聚體。 由實驗結果顯示,若反應溶劑為水(pH = 7) 及 [氧化劑]/[單體] = 2可有效提升苯胺三聚體之產率,改變反應溫度高低、反應時間長短及反應單體之濃度對所合成之苯胺三聚體產率並無明顯的影響。 總而言之,參數探討後選取最佳參數可有效的將苯胺三聚體的產率由原本的40.2% 提升至後來的85.5%。 此外,以純水(pH = 7)取代酸性水溶液可有效降低廢酸溶液的產出,強化環保概念。 基於第一部份參數探討的成功結果,第二部分是利用第一部分最佳參數所產生之苯胺三聚體,衍生製備一系列電活性環氧樹酯/石墨烯複合塗料。 並利用電化學法量測此複材塗佈在冷轧鋼片上之防腐蝕性能。 研究結果顯示,基於四種機制可說明此電活性環氧樹酯/石墨烯複合塗料具有極佳的金屬防蝕性能。 (1) 塗層電活性導致鈍性金屬氧化層的生成;(2) 石墨烯導入塗層可有效延遲氣體(如:氧氣及水氣等) 穿透塗層的速度;(3) 電活性環氧樹酯塗層與金屬基材具有極佳的複著性;(4) 電活性環氧樹酯/石墨烯複合塗層表面具有較佳的疏水性。

並列摘要


This dissertation is mainly focused on two research parts:(1) for the target of mass production of amine-capped aniline trimer (ACAT), several experimental parameters were investigated and tried to effectively increase the yield of ACAT;(2) the as-prepared ACAT with high yield was use to synthesize a series of electroactive epoxy/graphene composite coatings, followed by applied in anticorrosion application. In the first part, one-step oxidative coupling reaction was used to synthesize ACAT. In order to increase the yield of as-prepared ACAT, seven experimental parameters (e.g., different pH at same acid solution, different acid environments, reaction temperature, reaction time, kinds of oxidants, molar ratio of oxidant respect to monomer and concentration of reactive monomer) were investigated. The chemical structure of as-prepared ACAT was characterized by Mass, FT-IR and 1H-NMR spectroscopy. In summary, several conclusions can be drawn. First of all, in the solvent of pure water (i.e., pH = 7) and [oxidant] / [monomer] = 2, the yield of ACAT can be deffectively improve. However, the reaction temperature, reaction time and concentration of monomer used was found no obvious effect to facilitate the yield of ACAT. In this study, the yield of ACAT can be increased from original value of 40.2% to final value of 85.5%. In the second part, the as-prepared ACAT with yield of 85.5% was used to react with dianhydride to prepare a series of electroactive/rGO composite anticorrosion coatings. The corrosion protection performance of cold-rolled steel coupons coated with composites was determined by a series of standard electrochemical corrosion measurements in saline condition. The improvements in corrosion protection of electroactive epoxy resin/rGO composite coatings may be resulted from the following four possible reasons: (1) Reversible redox capability of electroactive epoxy resin leads the formation of densely passive of metal oxide to protect the underlayer metallic substrate; (2) Introducing the graphene platelets into electroactive epoxy coating may effectively increase the length of the diffusion pathways for oxygen and water as well as decrease the permeability of the coating;(3) Electroactive epoxy resin and composite coatings exhibited excellent adhesion capability upon metallic substrate;(4) Introducing the graphene platelets into electroactive epoxy coating surface may also increase the surface hydrophobicity of polymeric coating.

參考文獻


[2] H. Shirakawa, S. Ikeda, Polymer, 2, 231 (1971).
[5] C. Kittel. “Introduction to Solid State Physics “6th Ed. John Wiley&
Sons, Singapore (1986).
Electrochem. Commun, 3, 229 (2001).
[9] J. Stejskal, R. G. Gilbert, Pure. Appl. Chem, 74, 857 (2002).

延伸閱讀