透過您的圖書館登入
IP:3.137.170.183
  • 學位論文

TiNb2O7負極材料之合成與特性分析應用於鋰離子電池

Synthesis and Characterizations of TiNb2O7 Anode Materials for Lithium-Ion Batteries

指導教授 : 劉偉仁

摘要


於本研究中,我們成功的利用溶劑熱法合成出鈮鈦氧(TNO)負極材料,其中為了設計出最佳化的鈮鈦氧製程方法,本論文主要分為三個部分進行探討。第一部分是透過表面活性劑CTAB改質技術對鈮鈦氧進行處理,並探討表面活性劑CTAB添加效應對鈮鈦氧表面形貌及電化學循環穩定性之影響,第二部分則是延續第一部分有添加表面活性劑CTAB之鈮鈦氧相同製程方式,來探討不同煅燒溫度對鈮鈦氧的結構變化及電性表現之影響,第三部分則是透過鋁過渡金屬元素來取代鈦離子位置,並找出最佳摻雜比例來探討摻雜效應對鈮鈦氧電化學性質之影響。並將所製備的鈮鈦氧負極材料利用X射線衍射儀(X-ray diffraction)、掃描式電子顯微鏡(Scanning Electron Microscopy)及充放電儀對表面形貌、結構組成和電化學性質進行鑑定與分析。 第一部分,探討表面活性劑CTAB添加效應對鈮鈦氧之影響,透過研究結果顯示,有添加表面活性劑的鈮鈦氧在溶劑熱合成的過程中可以使顆粒分散更均勻並抑制顆粒生長,可以有效降低顆粒的大小。且透過充放電測試其電化學性質,可以發現有添加表面活性劑的鈮鈦氧的電池在0.1 C時平均電容量約為288.8 mAh/g,在20 C時電容量還保有158.03 mAh/g且庫侖效率為93.6%相比於未添加的表面活性劑的鈮鈦氧還要有更佳的電性表現,且於5 C電流密度下進行250圈循環壽命測試,相比於 TNO在經過250圈充放電過後的106.1 mAhg-1電容量,TNO-CTAB仍然保有118.2 mAhg-1,由此可知CTAB的添加可以有較穩定的結構,使TNO-CTAB於高充放電速率下能維持較高的電容量和循環穩定性。 第二部分,我們將有添加CTAB的鈮鈦氧最佳化製程方法透過不同煅燒溫度來進行探討,分別為700°C、800°C、900°C、1000°C和1100°C,由SEM可以觀察到,隨著煅燒溫度提升所合成的鈮鈦氧其表面形貌逐漸由球狀結構轉變到不規則塊狀結構,使原本單一晶粒的小粉體微球顆粒變得相對緻密,表面孔洞也隨之下降,透過BET量測結果得知溫度越高比表面積和孔體積反而降低,這結果與SEM的量測結果相呼應,透過電性測試發現在煅燒溫度為800°C時有最佳的電性表現,因此證實煅燒溫度及表面形貌對電性表現有很大的影響,這是因為比表面積和孔體積增加,可以提升材料與電解液之接觸面積,而多孔性結構可以做為鋰離子儲存的空間使其有利於後續之電化學表現。 第三部分,為了同時兼具高結晶性和好的電性表現,我們透過微量摻雜鋁過渡金屬元素來部分取代鈦離子,期望提升其快充能力表現。透過XRD顯示摻雜不會破壞材料的晶體結構,藉由晶格常數計算可以發現隨著摻雜濃度提升晶格常數逐漸下降,且XRD的繞射峰有往大角度偏移的現象,因此可以證實有成功將鋁摻雜於該材料中。由SEM可以明顯發現原本平滑的塊狀結構有微量的小顆粒附著於表面,且於電性測試之結果可以得知摻雜5 mol.%和7 mol.%有較佳的電性表現,但其中又以摻雜5 mol.%具有最佳電性表現,這是因為鋁有較小的離子半徑,透過微量取代鈦離子可以降低鈮鈦氧的粒徑,縮短鋰離子的傳遞路徑,從而有利於提升鈮鈦氧的電性表現,透過長循環壽命測試結果也可以發現經過250圈充放電過後,其還保有154.7 mAh/g的電容量,明顯高於我們在TNO-1000之118.2 mAh/g電容量許多。

並列摘要


In this study, We successfully synthesis the titanium niobium oxide (TiNb2O7) anode materials via solvothermal method and investigates their electrochemical properties for lithium-ion batteries. In order to design an optimized method for preparing a niobium-titanium oxide (TiNb2O7) compounds, in this study we divided into three parts to discussion: (i) surface modification of TiNb2O7 by using surfactant of CTAB additive, (ii) exploring the effect of different calcination temperatures on the first part process and (iii) finding the optimal aluminum doping ratio to explore the effect of doping effect on the electrochemical properties of TiNb2O7. In the first part, the research results show that the addition of surfactant (CTAB) can make the TiNb2O7 particles more uniformly dispersed and inhibit the growth of particles during the solvothermal process. Cycle life test revealed that the addition of CTAB has better electrical performance, it still maintained a capacity of 118.2 mAh/g after 250 cycles. In the second part, puts an emphasis on the effect of different calcination temperature on the electrochemical performance of TiNb2O7, as the calcination temperature increases, the surface morphology of the synthesized TiNb2O7 gradually changes from a spherical structure to an irregular block structure, which makes the original single-grain microsphere particles become relatively dense. The research results show that the calcination temperature at 800°C has the best electrical performance .This is because the increase in specific surface area and pore volume can increase the contact area between the material and the electrolyte. Lastly, focused on the cation substitution of Al3+, It was found that with Al3+ substitution can effectively improve the electrochemical performance. X-ray diffraction and transmission electron microscopy shows that doping will not damage the crystal structure of TiNb2O7. Using 5 mol.% Al3+ of doping, the cycle life tests revealed that TNO-Al-0.05 still maintained a capacity of 154.7 mAh/g after 100 cycles at a current density is 5 C. In addition, ionic conductivity and diffusion of TNO-Al-0.05 was also improved by doping aluminum.

參考文獻


[1] J. M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries", Materials for sustainable energy, pp. 171-179, 2011.
[2] 林振華、林振富, "充電式鋰離子電池-材料與應用",2002 全華圖書股份有限公司.
[3] 黃可龍、王兆翔、劉素琴, "鋰離子電池原理與技術",2010 五南圖書出版社.
[4] M. S. Whittingham, "Electrical energy storage and intercalation chemistry", Science, vol. 192, no. 4244, pp. 1126-1127, 1976.
[5] S. Basu, "Early studies on anodic properties of lithium intercalated graphite", Journal of power sources, vol. 81, pp. 200-206, 1999.

延伸閱讀