透過您的圖書館登入
IP:3.129.70.157
  • 學位論文

聚己內酯薄膜結構對骨母細胞生長之影響

Effect of polycaprolactone membrane structure on the growth of osteoblasts

指導教授 : 賴君義 蔡惠安

摘要


中文摘要 本研究主要目的在製備不同表面孔洞結構型態之聚己內酯(Polycaprolactone; PCL)薄膜,探討薄膜表面孔洞對於MG63骨母細胞生長的影響。薄膜製備藉由添加親水性PEG300於鑄膜液中,利用濕式相轉換法,可製備出表面較緻密及底部具較多孔之不對稱薄膜結構。較緻密之表面結構可以阻隔生長較快的上皮細胞,而底部較多孔結構則可以提供骨細胞聚集生長,進一步形成骨質的再生。對於不同表面孔洞薄膜也許能夠定義出對於骨細胞再生之理想孔洞薄膜,預期應用於引導組織再生與引導骨再生薄膜。 添加5-20wt%含量PEG添加劑於鑄膜液中,可製備出表面較緻密而底部為50-100μm均勻分布孔洞,然而不同PEG添加量對於孔洞差異性並不太顯著。藉由改變製膜厚度,則可有效改變薄膜底部孔洞差異性。薄膜厚度分別為53、120、239及535μm,利用影像分析軟體分析薄膜孔洞發現,隨著製膜厚度提昇底部孔洞大小隨之提昇且孔洞數量隨之減少,其孔洞大小分別為23.3±5.6、74.7±14.2、158±43.7及203±45.9μm而孔洞數量分別為1342、158、29及15 pore/mm2。 研究中以較緻密(0.14±0.04μm)表面、23.3±5.6、74.7±14.2、158±43.7及203±45.9μm表面孔洞結構之PCL薄膜培養骨母細胞,分別經過1、3、7及19天之培養後,以SEM觀察細胞型態,以MTT分析骨母細胞活性,以ALP分析骨母細胞分化特性。研究結果發現第1天骨母細胞均可貼附於任何薄膜表面結構上,而具不同孔洞結構之薄膜上發現骨母細胞已呈現延伸特性,但較緻密薄膜表面(孔洞為0.14±0.04μm)骨母細胞需到達第3天才可達到延伸特性,因此可以斷定較緻密表面並不利於骨母細胞延伸。而由MTT結果發現,表面孔洞為74.7±14.2μm之PCL薄膜其骨母細胞之增生速率最快。ALP活性分析結果發現,ALP含量隨著薄膜厚度及孔洞大小改變並沒有顯著差異,PCL製備不同薄膜結構之表面均可誘導骨細胞分化。因此本研究發現,有利於骨母細胞生長所需薄膜結構型態為膜厚120μm,孔洞大小為74.7±14.2μm。

並列摘要


Abstract In this study, the effect of MG63 osteoblast cells cultured on a Polycaprolactone (PCL) membranes surfaces with different pore sizes was investigated. PCL membranes were prepared by adding hydrophilic PEG300 into polymer solution, and then used wet induced phase separation process to create the asymmetric membrane with microporous surface and macroporous bottom structure. Microporous structure can resist the faster proliferation epidermal cells and the macroporous bottom structure can provide room for osteoblasts proliferation and further form the bone structure. By this study, we may find an optimized membrane pore size for bone cell regeneration. Base on this research, this polymer membrane can be used on the application of guided tissue regeneration (GTR) and guided bone regeneration (GBR). Adding 5-20 wt% PEG300 additive into the polymer solution and then prepared the PCL membrane with microporous surface and uniform pore size between 50 and 100μm. However, PEG content cannot generate obvious difference in the pore size while membrane thickness is the major factor for macroporous pore size. If film thickness is 53μm, 120μm, 239μm and 535μm, after “ “ simplePCI ” software analysis of membrane porous structure, we found that the pore numbers decreased while the membrane thickness increased, which means the final pore size are 23.3±5.6μm,74.7±14.2μm, 158±43.7μm and 203±45.9μm respectively, and pore numbers are 1342、158、29 and 15 pore/mm2 respectively. SEM, MTT assay and ALP activity assay were utilized to investigate porous PCL membrane structure with 1,3,7 and 19 days osteoblasts cell culture. The result showed that osteoblasts cell with spread characteristics already attached onto the porous membrane surface, but after 1 day culture, we found it took 3 days to observe the same phenomena on the microporous surface (pore size 0.14±0.04μm). Thus we can conclude that microporous surface is not suitable for the spreading of osteoblasts. By MTT assay result, PCL with 74.7±14.2μm pore size has fastest proliferation rate. According to ALP activity assay result, no obvious ALP level difference was found by changing membrane thickness and pore size. Finally, we also found that all PCL membrane structures can induce the differentiation of Osteoblasts and the most optimum membrane structure for Osteoblast growth is 120μm membrane thickness and 74.7±14.2μm pore size.

並列關鍵字

pore size osteoblasts Polycaprolactone membrane

參考文獻


1. S.V. Madihally, and H.W.T. Matthew, “Porous chitosan scaffolds for tissue engineering”, Biomaterials 20 (1999) 1133-1142.
2. G. Chen, T. Ushida, and T. Tateishi, “Development of biodegradable porous scaffolds for tissue engineering”, Materials Science and Engineering C 17 (2001) 63–69.
3. Z.G. Tang, J.T. Callaghan, and J.A. Hunt, “The physical properties and response of osteoblasts to solution cast films of PLGA doped polycaprolactone”, Biomaterials 26 (2005) 6618-6624.
4. Q. Hou, D.W. Grijpma, and J. Feijen, “Preparation of Porous Poly(ε-caprolactone) Structures”, Macromol. Rapid Commun. 23 (2002) 247-252.
5. Q. Hou, D.W. Grijpma, and J. Feijen, “Preparation of Interconnected Highly Porous Polymeric Structures by a Replication and Freeze-Drying Process”, J Biomed Mater Res Part B: Appl Biomater 67 (2003) 732-740.

被引用紀錄


呂翊帆(2016)。隨機及順向聚鄰甲氧基苯胺/聚己內酯靜電紡絲法纖維在組織工程之應用探討〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201600146

延伸閱讀