透過您的圖書館登入
IP:18.117.107.90
  • 學位論文

手機相機防手振機構最佳化設計與製作

Optimal Design and Manufacturing of the Anti-Shake Mechanism for Digital Cameras in Mobile Phones

指導教授 : 黃健生
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本文主要以手機相機光學防手振機構最佳化設計及製作為主要主軸,並參考目前市售具相機功能手機之大小為本篇機構設計之尺寸,以設計手機相機光學防手振機構。機構常、寬、高尺寸大小為15mm、15mm、9mm。並以0.2mm做為防手振機構的最大補償範圍。 此光學防手振機構使用音圈馬達(VCM)做為致動器動力來源。將線圈通入電流,並與與磁石、軛鐵(Yoke)形成之均勻磁場產生勞倫茲力(Lorentz’s Force)以帶動lens移動,並做手振反方向補償,以補償手振後影像模糊的問題。針對致動器之最短定位時間做防手振機構最佳化設計。在防手振機構設計之階段,設計具二方向移動之防手振機構,其運動方向與影像呈現垂直及橫向移動,並以音圈馬達來進行驅動。在機構設計中,並選用鋁作為機構材質。並於成型的機構表面加已硬化處理,其主要目的為減小接觸面積,以減少摩擦力的產生。在磁路分析階段,以ANSYS分析軟體及等效磁路法分析磁場強度及磁場分佈,並公式化等效磁路法。並於最後比較ANSYS和等效磁路法兩種方法分析結果。並將等效磁路路法應用於最佳化設計中以求得最大磁場強度。在最佳化設計階段,將機構尺寸、致動器尺寸、線圈圈數、磁石厚度、軛鐵尺寸作為最佳化參數,並使用基因演算法(Genetic Algorithm)以靈敏度(Sensitivity)作為性能指標(Performance Index)來求得最佳化之尺寸設計。

並列摘要


Optimal design of anti-shake mechanism in the mobile phone is presented in this study. The mechanism size compares the sizes of the digital cameras in the mobile phones sold in present market. The size of the anti-shake mechanism is 15 mm by 15 mm by 9 mm in length, width and height. The distance of the compensation is 0.2 mm. The actuator mechanism consists of mainly voice coil motor (VCM) where there consists of coils and magnets. The thrust of the actuator is from the voice coil motor (VCM). The coils with current on the lens holder actuator are pushed to move by Lorentz’s force in the uniform magnetic field and to drive the lens opposite the direction of shaking to compensate the image blurred. The purpose of this paper aimed to optimal design of anti-shake mechanism at the shortest traveling time of the actuator. In the step of mechanism design, designing the two dimensions mechanism along vertical and horizontal directions opposite the image, and choosing the voice coil motor (VCM) as the motive power. The anti-shake mechanism chooses aluminum as the material. Finally, anti-shake mechanism is hardened on the surface of the bases and the lens holder actuator. The purpose of these is to decrease the friction when the action parts move. In the step of magnetic circuit analysis, analyzing the distribution of magnetic field by ANSYS software and equivalent magnetic circuit method. In order to get the maximum magnetic flux density on the air gap, we formula the equivalent magnetic circuit in optimal design process. Finally, the paper compares the results of ANSYS software and equivalent magnetic circuit method in the last section of this chapter, and uses the equivalent magnetic circuit method to the GA program to find the maximum magnetic flux density of the air gap. In the step of optimal design, the design variables including the dimensions of actuator, yoke, account of coil, the thickness of magnet and etc. are chosen. The genetic algorithm is chosen to be optimal theory and sensitivity is defined to be performance index to obtain the optimal design variables.

參考文獻


[18] 吳松青,「手機數位相機光學變焦機構之最佳化設計與控制」,私立中原大學機械工程研究所,西元2006年。
[19] 吳定遠,「手機數位相機防手振機構之最佳化」,私立中原大學機械工程研究所,西元2006年。
[1] Kusaka, H., Tsuchida, Y., Shimohata, T., “Control technology for optical image stabilization,” SMPTE Journal, v 111, n 12, December, 2002, pp. 609-615.
[4] Sato, K., Ishizuka, S., Nikami, A., Sato, M., ”Control techniques for optical image stabilizing system,” IEEE Transactions on Consumer Electronics, v 39, n 3, Aug, 1993, pp. 461-466.
[6] Lequesne, B., ” Fast-acting, long-stroke solenoids with two springs,” IEEE Transactions on Industry Applications, v 26, n 5, Sep-Oct, 1990, pp. 848-856.

延伸閱讀