透過您的圖書館登入
IP:18.222.117.109
  • 學位論文

電活性聚苯胺中空球粒子與電紡絲透明支架材料之合成、鑑定及性質研究

Preparation, Characterization and Properties of Electroactive Polyaniline Hollow Spheres and Neat Electrospun Transparent Scaffolds

指導教授 : 葉瑞銘

摘要


此論文提供了一個微米和納米結構聚苯胺 (電活性和電導率) 之相關現象的研究。其方法包括核殼模板移除法製備中空球和靜電紡絲技術的不織布納米纖維。N-[3-(trimethoxysilyl)-propyl]aniline作為偶合劑,成功製備聚苯胺塗層SiO2 核殼型 (SiO2@PANI) 混成微膠囊,在氫氟酸蝕刻後形成中空聚苯胺球。60 nm和120 nm殼層厚度蔓越莓型空心聚苯胺球可以利用掃描電鏡圖觀測到。而空心球聚苯胺厚度的電性也被檢測與相對應的核殼微粒子相比較。 電活性獨立不織布poly(o-methoxyaniline) (POMA) 利用靜電紡絲技術在不與混合或嫁接的情況下製備而成。研究顯示連續纖維結構獲得是由於在較高分子量 ≈ 69 000 POMA於CaCl2的存在下合成,對POMA的烷氧基取代結構使其更可溶性。有關參數的比較,條件為5 wt % POMA溶液在20 kV電壓、0.02 ml•min-1推進速率以及噴管與收集板12釐米的距離可得均勻POMA纖維。其結果的決定是藉由掃描電鏡圖來分析形態學變化。另外,循環伏安儀和動態機械儀分別用來研究靜電紡絲不織布的電活性和機械強度。 此外,靜電紡絲POMA 纖維作為一個生物支架材料,並研究有關皮質神經幹細胞的增殖和分化在纖維結構上的影響。靜電紡絲POMA支架在神經幹細胞的長期增生過程是無毒害也沒有不良的影響,表現保留神經球形,自我增生,自我更新,和展示多種細胞分化能力。細胞與支架材料的相互作用的研究完成於靜電紡絲POMA支架上培養神經幹細胞和評估其生長、細胞存活和分化。Trypan藍染色細胞存活檢測、免疫螢光染色,和掃描電鏡圖研究證實,結果POMA電紡絲支架不僅表現出更好的神經幹細胞貼附,而且也強化加速細胞分化,證明該靜電紡絲技術生產優質、更適合生物相容納米纖維支架的神經幹細胞組織工程。

並列摘要


This dissertation provides a study of related phenomena (electroactivity and conductivity) which is induced by micro- and nano-structuring polyaniline (PANI) architecture. In the construction of classification approaches, including sacrificial core template for the hollow spheres and electrospinning technique for non-woven nanofibers-mat are presented. N-[3-(trimethoxysilyl)-propyl]aniline simply functioned as a coupling agent was successfully the polyaniline-coated SiO2 core-shell (SiO2@PANI) hybrid micro-capsules and prepared hollow PANI spheres after HF etching. The raspberry-like hollow PANI spheres with wall thickness of 60 and 120 nm can be observed by SEM image. The electrical properties of hollow spheres incorporated PANI thickness was also examined and compared to corresponding core-shell micro-particles. The neat electroactive free-standing nonwoven mat was first prepared through without blending with or grafting onto poly(o-methoxyaniline) (POMA) using an electrospinning technique. The studies showed that continuous fiber structure was obtained due to the higher molecular wight of POMA is synthesized in the CaCl2 presence and an alkoxyl ring-substituted structure on POMA forced to be more soluble. Comparing with governing parameters, uniform POMA fibers produced from 5 wt % POMA solution at 20 kV, feeding rate of 0.02 ml•min-1, and 12 cm of nozzle-to-collector distance. The electrospinning parameters decided the morphological changes through SEM. In addition, electroactivity and mechanical strength of neat electractive electrospun nonwoven mat were also studied by electrochemical CV and DMA. Furthermore, the electrospun POMA fibers will be as a bio-scaffold and study the influence of fiber structure about cortical neural stem cells (NSCs) of proliferation and differentiation. The electrospun POMA scaffold is less harmful and no adverse effects in the long-term proliferation of NSCs, which retained the ability to proliferate, form neurospheres, self-renew, and exhibit multipotentiality. The study of interaction between cells and scaffold were carried out culturing NSCs on electrospun POMA scaffold and assessing their growth, cell viability and differentiation. The results of trypan blue staining cell viability assay, immunofluorescence staining, and SEM images studies confirmed, not only did POMA spun scaffolds showed better NSCs attachment but also enhanced and accelerated differentiation, proving that electrospinning technique produced superior and more suitable biocompatible nsnofibrous scaffolds for NSCs tissue engineering.

參考文獻


1. Rao, C.N.R.; Cheetham, A.K. ‘Science and technology of nanomaterials: current status and future prospects’ J. Mater. Chem. 2001, 11, 2887-2894.
2. Lazzari, M.; López-Quintela M.A. ‘Block copolymers as a tool for nanomaterial fabrication’ Adv. Mater. 2003, 15(19), 1583-1594.
3. Zou, H.; Wu, S.; Shen, J. ‘Polymer/silica nanocomposites: preparation, characterization, properties, and application’ Chem. Rev. 2008, 108, 3893-3957.
4. Hajji, P.; David, L.; Gerard, J.F.; Pascault, J.P.; Vigier, G. ‘Synthesis, structure, and morphology of polymer- silica hybrid nanocomposites based on hydroxyethyl methacrylate’ J. Polym. Sci., Part B: Polym. Phys. 1999, 37, 3172-3187.
5. Pileni, M.P. ‘Fabrication and physical properties of self-organized silver nanocrystals’ Pure Appl. Chem. 2000, 72, 53-65.

被引用紀錄


葉律真(2014)。製備電活性聚脲/奈米碳管複合材料偵測維生素C及電活性高分子基材對於神經幹細胞之應用探討〔博士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201400464

延伸閱讀