透過您的圖書館登入
IP:18.188.10.246
  • 學位論文

利用電漿技術製備複合催化劑應用於酸性藍光催化降解之研究

The Application of Composite Catalysts Synthesized by Microwave Plasma on Photocatalytic Degradation of Acid Blue

指導教授 : 王雅玢 游勝傑
本文將於2025/11/20開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


酸性藍被歸類為偶氮染料,廢水產生量高,若採用混凝-膠凝、生物處理和吸附等處理,需要大量空間,在台灣土地面積有限的情況下,不是一個最佳選擇。 TiO2 是一種廣泛使用的光催化劑,它具有多種優點,包括適用於小面積應用、低可見光反應以及 e/h+ 對的快速復合。利用將生物炭與 TiO2 奈米顆粒結合,可以克服這些限制,且生物炭負載的 TiO2 複合材料的光催化活性在紫外可見範圍內顯著提高。 Biochar 和 Co-Pyrolysis char 從電漿熱解反應中可獲得此可再利副產品,並可進一步作為摻雜鈦 (II) 的光催化劑來處理酸性藍染料。該合成採用水解法和煅燒法,摻雜生物炭和二氧化鈦作為光催化劑材料。實驗參數選擇氣體流量 7L/m、9L/m 和 11L/m, 生物炭與共熱解炭與 TiO2的比例為 0.1:1; 0.3:1; 0.3:1; 0.5:1; 0.7:1;和 1:1。使用 FTIR、XRD、BET、元素和 Zeta 電位進行特性分析,並應用準一級、準二級、Langmuir動力學和等溫光催化劑模型分析去除行為。結果顯示,與單獨使用 TIO2 和純 Biochar 相比,使用 Biochar 和 Co-Pyrolysis char/TiO2 的優點是反應更快,Biochar/TiO2控制在 9L/m及比例 1/1下,在 10 PPM 酸性藍色染料中降解污染物高達 83.60% 的效率;而共熱解炭/TiO2 複合材料控制在 9L/m及比例 1/1下,對10 PPM 酸性藍色染料具有 78.80% 的去除效率。此複合光催化劑,Biochar/TiO2和Co-pyrolysis char/TiO2合成後的表面積分別為119.4356 m2和88.2361 m2,而兩種材料的孔隙體積分別為 0.7421 m3 和 0.1682 m3。 Biochar/TiO2 樣品中出現的官能團包含-OH(羥基)、C=C、-CF、C=O、-CH3、C-O-C 鍵,而在 Co-Pyrolysis Char 則出現-OH ,C=C,-CF。Biochar/TiO2和Co-pyrolysis char/TiO2光觸媒材料重覆使用,將導致10 PPM酸性藍染料在第三次循環使用中的效率分別下降64.63%和61.38%。當將 TiO2 添加到染料溶液中時,酸性藍分子主要通過其磺酸鹽基團被吸附,研究 AOP 系統中萘基偶氮染料光降解的主要降解途徑是羥基自由基對萘環的攻擊,導致形成羥基化的萘基偶氮染料,然後將其裂解。此外,羥基自由基攻擊含有偶氮基團的芳香環,導致偶氮鍵斷裂,這兩種反應都會導致髮色團的破壞,加速染料降解。

並列摘要


ABSTRACT Acid Blue, which is categorized as Azo Dye producing a high rate of wastewater and treated conventionally with coagulation-flocculation, biological treatment, and adsorption, needs a huge amount of space. TiO2 is a widely used photocatalyst, it has several advantages, including its suitability for small area applications, low visible light response, and rapid recombination of e/h+ pairs. By combining biochar with TiO2 nanoparticles, these limitations can be overcome. The photocatalytic activity of the biochar-supported TiO2 composites was significantly increased in the UV-visible range. Biochar and Co-Pyrolysis char gained from plasma pyrolysis by-product as photocatalysts doped with Titanium (II) to treat Acid Blue dye. The synthesis applied with hydrolysis method following with calcination process to dop Biochar and TiO2 as photocatalysts material. The ratio between Biochar and Co-Pyrolysis char in 7L/m, 9 L/m, and 11L/m plasma pyrolysis by-product over TiO2 was varied by 0.1:1; 0.3:1; 0.3:1; 0.5:1; 0.7:1; and 1:1. Characterizations using FTIR, XRD, BET, Elemental, and Zeta Potential were carried out, and removal behavior was analyzed with pseudo-first-order, pseudo-second-order, Langmuir kinetic, and isotherm photocatalysts model. The benefit of using Biochar and Co-Pyrolysis char/TiO2 compared with TIO2 and pure Biochar alone is it react faster, degrade the pollutant up to 83.60% of Biochar/TiO2 9L/m 1/1 in 10 PPM Acid blue dye with minimum side effect due to the process of photodegradation and demineralization which react The Co-pyrolysis char/TiO2 composite has 78.80% TiO2 9L/m 1/1 photodegradation and 20.15 nm of particle size. On photocatalysts, surface area after synthesis process of Biochar/TiO2 and Co-pyrolysis char/TiO2 respectively are 119.4356 m2 and 88.2361 m2. While pore volumes of both materials respectively are 0.7421 m3 and 0.1682 m3. Functional groups of Biochar/TiO2 samples which appeared are –OH (hydroxyl group), C=C, -CF, C=O, –CH3, C–O–C bond, while, at Co-Pyrolysis Char which appeared are -OH, C=C, -CF. Physical and chemical influences were proven by kinetic analysis with pseudo-first-order kinetic. Acid blue molecules are adsorbed primarily via their sulfonate groups when TiO2 is added to dye solutions. The primary degradation pathway investigating naphthyl azo dye photodegradation in AOP systems is the attack of hydroxyl radicals on the naphthalene ring, resulting in the formation of a hydroxylated naphthyl azo dye that is then cleaved. Additionally, hydroxyl radicals attack aromatic rings containing azo groups, resulting in the cleavage of azo bonds. Both of these reactions result in the destruction of chromophoric groups. Multiple usages of photocatalysts material will cause performance at 10 PPM Acid blue dye in the 3rd cycle usage decline by 64.63% and 61.38% of Biochar/TiO2 and Co-pyrolysis char/TiO2 correspondingly.

參考文獻


[1] L. Tang and H. Huang, “Plasma Pyrolysis of Biomass for Production of Syngas and Carbon Adsorbent,” vol. 39, no. 5, pp. 1174–1178, 2005.
[2] U. Diebold, “The surface science of titanium dioxide,” vol. 48, no. x, 2003.
[3] K. Nakata and A. Fujishima, “Journal of Photochemistry and Photobiology C : Photochemistry Reviews TiO 2 photocatalysis : Design and applications,” vol. 13, pp. 169–189, 2012.
[4] K. Maeda, “Journal of Photochemistry and Photobiology C : Photochemistry Reviews Photocatalytic water splitting using semiconductor particles : History and recent developments,” "Journal Photochem. Photobiol. C Photochem. Rev., vol. 12, no. 4, pp. 237–268, 2011.
[5] S. Sing, L. Zou, and E. Hu, “Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO 2 pellets,” vol. 115, pp. 269–273, 2006.

延伸閱讀