歷年來癌症皆為主要死因之一,對於癌症治療的問題,學術與產業界都在積極發展新的治療技術,期望能減少病患痛苦,並降低副作用。磁性熱療技術被視為最具潛力的治療方法,因此本研究以具有良好生物相容性之聚己內酯(PCL)與聚苯胺(PANI),包覆鐵(Fe0)奈米粒子,發展出靜電紡絲磁性複合纖維,使其可應用於癌症磁性熱療技術。 本研究主要利用氧化還原法,於常溫常壓下合成Fe0奈米粒子,並利用溶膠凝膠法,於Fe0奈米粒子表面修飾上二氧化矽層,形成核殼型之磁性粒子。接著將鐵奈米粒子與聚己內酯(PCL)、聚苯胺(PANI)進行電紡絲實驗,製備出磁性奈米纖維複合材料。 本實驗證實,常溫常壓下可合成14.2nm Fe0奈米粒子,並利用聚乙烯吡咯烷酮(PVP)分子量、PVP濃度、檸檬酸鈉濃度、氯化鐵的濃度,可以客製化Fe0奈米粒子大小。此外,由於Fe0奈米粒子接觸空氣會氧化,故在其表面修飾二氧化矽層,防止Fe0奈米粒子氧化。藉由改變二氧化矽前驅物的量,可控制二氧化矽層厚度。接著將製備出的Fe0奈米粒子,與聚己內酯(PCL)、聚苯胺(PANI)進行電紡絲實驗,並改變Fe0奈米粒子與聚苯胺含量,在高週波交流磁場測試下,探討鐵奈米粒子與聚苯胺,對加熱效果之影響。實驗結果證實:當複合纖維內的鐵奈米粒子愈多時,加熱效果愈好;且添加聚苯胺可有效增進複合纖維的加熱效果。在此實驗中,聚苯胺與Fe0奈米粒子,最佳添加重量比為0.1:0.06,其製備之複合纖維SAR值高達227W/g。
Cancer is among the major causes to human deaths. Magnetic hyperthermia therapy is one of the potential technologies to treat cancer. Therefore, the aim of this research is to develop electrospun magnetic nanofibers for application in hyperthermia therapy. This study successfully synthesized iron (Fe0) nanoparticle in room temperature from iron chloride (FeCl3) using sodium borohydride as a reducing agent. The experimental results exhibited that the morphologies of iron nanoparticle were controlled by molecular weight of polyvinylpyrrolidone (PVP), concentration of PVP, concentration of citric acid and concentration of FeCl3. The surface of magnetic nanoparticles was coated with silica layers to prevent the iron oxidization and we can controll the thickness of silica layers by adjusting the amount of silica precursors. Electrospinning method was used to fabricate Fe0 / polyaniline (PANI) / polycaprolactone (PCL) nanofibers. We investigated their heating effect by varying ratios of Fe0 nanoparticle and PANI under an alternating magnetic field. The experimental results exhibited that the heating rate increased as increasing the incorporated amount of Fe0 nanoparticles in the nanofiber. In addition, the heating effect was improved by adding PANI in the nanofiber. The optimal result of the developed magnetic nanofibers possesses specific absorption rate (SAR) close to 227 W/g. The present electrospun magnetic nanofiber could be a potential candidate for hyperthermia cancer therapy.