透過您的圖書館登入
IP:18.224.62.25
  • 學位論文

奈米三元金屬氧化物(ZnxFe1-x)SnO3氣體吸附之研究

The investigation of the gas adsorption of ternary nanometeal oxide (ZnxFe1-x)SnO3

摘要


本實驗為利用水熱法合成三元奈米金屬氧化物(ZnxFe1-X)SnO3。並將合成之粉末進行XRD鑑定其結晶相,SEM來觀察其外觀形貌及其顆粒大小,TGA來了解其臨界溫度, XAS進行價數判定和配位環境,氮氣吸附法來分析其比表面積(BET)。 藉由 X光繞射數據,比對繞射峰的值與位置可以發現所有繞射峰沒有因鐵離子的參雜而有所改變。並且隨著 Fe3 +離子濃度增加的同時,晶格體積和晶格參數均變小。在價態上的判定不論由 XANES分析或以GSAS軟體對XRD數據的擬和計算,皆有相同的結論說明樣品中各元素之價數:Zn2+、 Fe3+ 、Sn4+ 、 O2-。從 TGA的結果可以證實當溫度高於260℃時,將會造成此系列樣品之裂解。藉由SEM與BET量測得知樣本大小均為 300奈米,但比面積隨 Fe3 +離子濃度增加而增加。根據BET理論得知此一系列之三元奈米金屬氧化物(ZnxFe1-X)SnO3對於氮氣沒有很好的吸附能力。

並列摘要


In this study, we successfully fabricated hierarchical (ZnxFe1-x)SnO3 nanocages by the hydrothermal method. The crystal structure of the synthesized compounds was characterized by X-ray powder diffraction (XRD), and the particle dimensions and morphology were evaluated by scanning electron microscopy (SEM). The critical temperature of the compounds was measured using a thermogravimetric analyzer (TGA), and the valence and coordination environment were determined by X-ray absorption spectroscopy (XAS). The Brunauer-Emmitt-Teller theory (BET) was used to estimate the surface area of the compounds. The XRD data indicated that all the diffraction peaks could be indexed with a cubic unit cell (space group: P n -3 ). No diffraction peaks from any other impurities were observed. Both the cell volumes and the lattice parameters reduced with an increase in the Fe3+ ion concentration. The valence states were confirmed to be Zn2+, Fe3+, Sn4+, and O2- by an X-ray absorption near-edge structure (XANES) analysis and refinement of the XRD data were performed using the GSAS software. The TGA results showed that when the temperature was higher than 260℃, the sample cracked. The sample size remained constant at approximately 300 nm, but the surface area increased with an increase in the Fe3+ ion concentration. According to the BET theory, this series of ternary metal oxides do not show good gas adsorption for nitrogen.

並列關鍵字

gas sensor ZnSnO3 XAS

參考文獻


[20] Jing, Z. ; Zhan, J. Adv. ; Mater. 20, 4547-4551, 2008.
[25] Morey G. W. ; Ceram. J. Am. ; Soc. 36,279, 1953.
[28] Wu X. H. ; Wang Y. D. ; Tian Z. H. ; Liu H. L. ; Zhou Z. L. ; Feng L. Y. ; Solid-State Electronics 46. 715–719. 2002.
[29] Inaguma Y. ; Yoshida M. ; Katsumata J. T. ; Am. Chem. Soc. 130, 6704–6705, 2008.
[31] Kovacheva D. ; Petrov K. ; Solid State Ionics 109, 327-32, 1998.

延伸閱讀