透過您的圖書館登入
IP:18.221.154.151
  • 學位論文

聚甲基丙烯酸甲酯膜材表面超疏水化電漿改質技術之研究

Investigations on Plasma Modification Processes in Forming Super-hydrophobic Surfaces on Poly(methyl methacrylate)

指導教授 : 魏大欽

摘要


本研究以常見之緻密高分子聚合物為基材,分別為等規聚丙烯(i-PP)、無規聚丙烯(a-PP)、聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、聚對苯二甲酸乙酯(PET),利用CF4電漿進行表面改質,探討膜材性質之不同對電漿改質膜材表面疏水及疏油性質的影響,而後針對聚甲基丙烯酸甲酯(PMMA)進行膜面超疏水化之電漿改質,探討電漿功率、改質時間、氣體流率、SF6電漿改質與兩步驟電漿改質對膜材表面疏水及疏油性質的影響。並且利用WCA、XPS、SEM、AFM等儀器分析表面化學組成與物理形態之變化,搭配電漿放射光譜儀(OES)分析電漿中物種濃度的變化。 首先使用CF4電漿對各種膜材進行表面改質,發現各膜材皆能在短時間內(1 min)快速氟化,但氟化程度與膜材之氫碳比有正比之關係,含氧量較高的膜材受到電漿蝕刻效應皆較明顯,而非結晶性膜材也較具結晶度之膜材易於蝕刻,在表面形態發現CF4電漿不易於含有苯環之堅硬結構膜材製造出粗糙度。 針對PMMA膜材進行CF4電漿表面改質,發現改質後膜面具有超疏水(~155°)及疏油(~140°)特性,接觸角遲滯現象與滑落角約為40°。電漿改質後膜面氟碳比約為1.1,膜材表面形態亦有明顯之變化,由SEM及AFM發現膜面具有兩種尺度的微結構粗糙度,進而使表面具有超疏水之特性。 在增加電漿功率及降低氣體流率都能提升膜面粗糙度,其中增加功率會加強離子轟擊的效果使表面粗糙度隨之提升,幫助膜面快速達超疏水化和提升自潔效果,而降低氣體流率會產生電漿聚合效應,表面在覆蓋一層氟碳膜後電漿主要為蝕刻效應,造成表面粗糙度提升,但膜面氟碳比較低、氧碳比較高,不利於降低表面能,造成膜面不易達到超疏水化之特性也不具有自潔效果。 將進料氣體由CF4改為SF6進行改質,發現PMMA膜面可在較短改質時間達到超疏水的特性,從SEM圖中發現表面有明顯的粗糙結構產生,說明SF6電漿提供更多氟自由基濃度並以蝕刻效應為主,但其高溫之電漿環境,使得膜材有嚴重的破壞,大幅降低透光度。 最後進行兩步驟之表面電漿改質,以氧氣電漿為第一步驟,發現可以增加後續經由CF4電漿處理後之表面粗糙度,提升疏水效果和自潔效應,在適當調配兩步驟之電漿功率和改質時間後得到維持光學性質和表面超疏水化之最佳製程參數。

並列摘要


In this study, surfaces of polymer sheets (e.g. i-PP, a-PP, PS, PMMA, PC, PET) were modified into hydrophobic and oleophobic by CF4 plasma treatment. These polymer sheets were fluorinated immediately (~1 min) and the degree of fluorination was related to polymer’s H/C ratio. It is also found the etch rate and surface roughness were affected by its chemical structure (e.g. oxygen content, phenyl ring, crystallinity) after CF4 plasma modification. Among the transparent polymers (PS, PMMA, PC, PET), the most effective surface modification was on PMMA sheet. The PMMA surface’s water contact angle was greater than 150° and methylene iodide (CH2I2) contact angle was greater than 140° after CF4 plasma modification. Further, the water contact angle hysteresis (WCAH) and the sliding angle were both at 40°. The results also revealed that the surface roughness was significantly increased. At the same time the surface fluorination occurred rapidly by the plasma treatment. After operating plasma parameter optimization (power, gas flow rate, treatment time), we succeeded to fabricate super-hydrophobic PMMA sheet and maintained its good transmittance. Two-step plasma treatment was also conducted on PMMA sheets. O2 plasma was better than Ar plasma for the first step, since it led the surface roughness to increase and also improved both the surface hydrophobicity and self-cleaning capability. We also fabricated super-hydrophobic PMMA and maintained its good transmittance after optimizing the process parameters of the two-step plasma treatment.

參考文獻


[2] 古奕凡, "聚丙烯膜材表面超疏水化電漿改質技術及形成機制之研究," 私立中原大學碩士論文, 2009.
[5] 楊士賢, "以脈衝式電漿輔助化學氣相沉積法製備氟化非晶碳膜之研究," 私立中原大學碩士論文, 2005.
[6] 劉志宏, "應用實驗設計法與電漿診斷技術探討電漿沉積氟碳膜製程之研究," 私立中原大學博士論文, 2005.
[4] 鄭為允, "以高溫微波電漿火矩轉化四氟甲烷與六氟化硫之研究," 私立中原大學碩士論文, 2007.
[7] B. Chapman, "Glow Discharge Process," John Wiley & Sons, 1980.

被引用紀錄


曾柏瑋(2016)。電漿改質低介電常數材料及其表面特性分析〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201600709
陳品齊(2013)。奈米球微影及電漿改質製備高分子表面超疏水化之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201300767
陳榮俊(2012)。四氟乙烷電漿沉積氟碳複合結構薄膜製程之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201200630

延伸閱讀