透過您的圖書館登入
IP:18.118.102.225
  • 學位論文

主鏈型與側鏈型苯胺四聚體之電活性可降解聚氨酯之合成、鑑定、物性研究與硫化氫感測研究

Synthesis, Characterization and Physical Property Studies of Electroactive Biodegradable Polyurethane Containing Aniline Tetramer of Main-chain and Pendant for H2S Gas Detector

指導教授 : 葉瑞銘
本文將於2024/08/21開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


本碩士論文之研究主軸為合成及鑑定新型之生物可降解型電活性氣體感測材料,並將其塗佈在指叉式電極的表面製作成感測元件,進一步探討此元件作為硫化氫氣體感測之執行效能。   首先,於電活性單體的製備方面,利用氧化偶合法合成兩種不同結構之苯胺四聚體(單端胺基及雙端胺基),並且利用核磁共振光譜儀(NMR)、傅立葉轉換紅外線光譜儀(FT-IR)及質譜儀(MS)等設備做苯胺四聚體化學結構的鑑定。另一方面,生物可降降解性之聚乳酸亦利用傳統之合成方法製備並以紅外光譜儀與核磁共振光譜儀進行化學結構之鑑定。   於生物可降解型電活性氣體感測材料之製備方面,以電活性苯胺四聚體與生物可降解聚乳酸結合形成共聚物,並透過結構設計將寡聚體以不同形式修飾於高分子鏈,以側鏈修飾及主鏈修飾之方式製備出本研究所需之生物可降解型電活性氣體感測材料,進一步以傅立葉轉換紅外線光譜儀(FT-IR)鑑定確認聚氨酯已合成成功。   合成材料的性質檢測方面,生物可降解型電活性氣體感測材料的氧化還原性質(電活性)可藉由電化學循環伏安儀及紫外光-可見光吸收光譜儀(UV-visible spectroscopy)監測實驗確認,並由四點探針測試摻雜材料之導電度,而材料之生物可降解性以ASTM D 6400的方法來證實。更進一步將側鏈型與主鏈型生物可降解型電活性氣體感測材料進行上述鑑定,比較結構變化對於材料特性產生之影響。   最後將側鏈型與主鏈型生物可降解型電活性氣體感測材料進行硫化氫的感測研究,由實驗得數據顯示: 側鏈型生物可降解型電活性氣體感測材料於靈敏度高出主鏈型生物可降解型電活性氣體感測材料約1.96倍之靈敏度,而主鏈型生物可降解型電活性氣體感測材料則以穩定性優於側鏈型生物可降解型電活性氣體感測材料2~4倍。

並列摘要


The main idea of this reserch is to synthesize and identify new biodegradable electroactive gas sensing materials and apply them on the surface of the interdigitated electrode to investigate the performance of this component in sensing H2S gas. .   First, in the preparation of electroactive monomers, two different structures of aniline tetramers (single-ended amine and double-ended amine) were synthesized by oxidative coupling reaction, followed by characterized by nuclear magnetic resonance (NMR) and Fourier-Transformation infrared (FTIR) and mass spectroscopy (MS). On the other hand, biodegradable poly(lactic acid) is also synthesized by conventional method and characterized by FTIR and NMR.   In the preparation of the biodegradable electroactive gas sensing materials, the electroactive aniline tetramer is combined with the biodegradable poly(lactic acid) to form a copolymer, and the oligomer is modified into a polymer chain in different forms through structural design. The biodegradable electroactive gas sensing materials required for the study were designed by modified aniline tetramer at the position of side chain and main chain, and further characterized by FTIR spectroscopy. The redox property (electroactivity) of the biodegradable electroactive gas sensing material can be confirmed by electrochemical cyclic voltammetry and UV-visible spectroscopy monitoring experiment. The conductivity of as-prepared materials can be determined by four-point probe technique. The biodegradability of as-prepared materials was investigated by the method of ASTM D 6400 to confirm that the material is indeed biodegradable.Further, the biodegradable electroactive gas sensing materials with aniline tetramer at side chain and main chain are subjected to the above identification, and the influence of the structural change on the material characteristics is compared.   Finally, the biodegradable electroactive gas sensing materials with aniline tetramer at side chain and main chain was subjected to H2S gas sensing research. The experimental data show: biodegradable electroactive gas sensing material with aniline tetramer at side chain was found to show ~ 1.96 times higher in sensitivity than that of the biodegradable electroactive gas sensing material with aniline tetramer at main chain. Moreover, the stability of the biodegradable electroactive gas sensing material with aniline tetramer at main chain is found to be better (2 to 4 times) than the biodegradable electroactive gas sensing material with aniline tetramer at side chain.

參考文獻


[1] P. Schwabl, Assessment of microplastic concentrations in human stool ,2018
[2] 胡家信,應用無線感測網路於石化業之硫化氫偵測系統,義守大學資訊工程碩士畢業論文,2012。
[3] H. Bai, G. Shi. Sensors, 2007, 7, 267.
[4] C. Nylander, M. Armgarth, I. Lundstrom, Fukuoka, Japan, 1983, p. 203.
[5] A. Mohammadi, M.A. Hasan, B. Liedberg, I. Lundstrom, W.R. Salanek. Synthetic Metals, 1986, 14, 189.

延伸閱讀