透過您的圖書館登入
IP:13.58.201.235
  • 學位論文

奈米線壓電式發電系統

Piezoelectric Power Generator Utilizing Nanowires

指導教授 : 章明

摘要


本研究使用氧化輔助氣固法,透過鐵鎳合金基板上生長的α-Fe3O4奈米線,以及鋅基板上生長的ZnO奈米線,將其組裝後應用於奈米發電系統上。 實驗係以三種壓電基板組合,透過穩定壓應力之機械能進行比較,其中生長α-Fe3O4奈米線的上電極搭配生長ZnO奈米線組成的壓電片具有良好且穩定的輸出,當壓應力在0.4MPa時,電壓為4.5×〖10〗^(-3)V、電流則為5.8×〖10〗^(-7)A。 壓電基板透過增加緩衝層的方式組裝,經ANSYS分析證明壓應力均勻分布於基板上,結合由600℃改質溫度快速熱退火(RTA)的過程,電流得到14倍之有效提升。此外,發電系統透過壓電基板串聯四片後得到9.6×〖10〗^(-3)V的輸出,再配合倍壓電路之設計,可有效提升電壓25倍。 關鍵詞:氧化輔助氣固法、奈米發電系統、緩衝層、快速熱退火系統

並列摘要


In this study, oxidation auxiliary vapor-solid method is used for the growth of α-Fe3O4 nanowires on Fe-Ni alloy substrates, and also ZnO nanowires on zinc substrates. These parts were assembled to construct a nano-generator. Experiments were carried out with three combinations of piezoelectric substrates. A good and stable output was obtained with the combination that the substrate with the growth of α-Fe3O4 nanowires as the upper electrode and the growth of ZnO nanowires as the piezoelectric layer. Experimental result shows that the output voltage and current are 4.5×10-3 V and 5.8×10-7 A, respectively, under a constant compressive stress of 0.4 MPa. A buffer layer was added and assembled with the piezoelectric substrates, which was used to uniform the applied stress. This was proved with the simulation result from the commercial finite element package ANSYS. In addition, combined with the use of the rapid thermal annealing (RTA) process at 600°C, an increasing of 14 times of the output current was achieved. Furthermore, the power generating system produces a voltage of 9.6×10-3 V via series-connecting four piezoelectric substrates, and can enhance to 25 times of the output voltage with the assist of an external electrical circuit. Keywords: oxidation auxiliary vapor-solid method, nano generator, buffer layer, rapid thermal annealing

參考文獻


[18]許乃鋒,“金屬氧化物奈米線的合成技術及其在奈米發電機之應用”,中原大學機械學系博士論文, 2011.
[1]P. Glynne-Jones, S.P. Beeby, and N.M. White, “Toward Piezoelectric Vibration-Powered Microgenerator,” IEEE Proceeding Science,Measurement and Technology, Vol. 148, No. 2, pp. 68-72, 2001.
[2] F. Lu, H.P. Lee, and S.P. Lim, “Modeling and Analysis of Micropiezoelectric Power Generators for Micro-Electromechanical-Systems Applications,” Smart Materials and Structures, Vol. 13, pp. 57-63, 2004.
[4]S.N. Chen, G.J. Wang, and M.C. Chien, “Analytical Modeling of Piezoelectric Vibration-Induced Micro Power Generator,”Mechatronics, Vol. 16, pp. 379-387, 2006.
[5]G.J. Wang, W.C. Yu, Y.H. Lin, and H. Yang, “Modeling and Fabrication of A Piezoelectric Vibration-Induced Micro Power Generator,” Journal of the Chinese Institute of Engineers, Vol. 29, No. 4, pp. 697-706, 2006.

延伸閱讀


國際替代計量