透過您的圖書館登入
IP:3.147.104.248
  • 學位論文

利用金奈米粒子布朗運動感測生醫水凝膠聚合機制之探討

Investigation of Hydrogel Polymerization by Brownian Motion of Gold Nanoparticles

指導教授 : 林政鞍

摘要


水凝膠(Hydrogel)為具有網狀膠聯結構的水溶性高分子,大量吸收水分之特性可用於許多生醫方面應用。水凝膠高分子經添加光起始劑後給予UV能量可產生聚合反應形成水凝膠,但照射的時間長短會影響其吸水能力及產生副產物導致汙染,因此控制凝膠聚合時間相當重要,但目前並無相關研究可實際觀察分析水凝膠的聚合過程及記錄聚合時間。黃金奈米粒子為目前常用的生醫感測器,其具有豐富的散射光及液體中布朗運動特性,搭配暗視野顯微鏡可觀察實際粒子之散射光及布朗運動狀態,藉追蹤運動軌跡及分析速度變化可作為液體環境變化之感測器,若經由分析布朗運動於水凝膠聚合反應前後之速度變化,可做為聚合時間參考。本研究將以金奈米粒子為感測器,於溶液中加入不同含量之高分子並找取最佳比例;加入不同濃度光起始劑及給予UV能量可將高分子聚合成水凝膠,並藉由調整光譜、能量、粒子尺寸分析聚合相關響應,實驗全程搭配暗視野顯微鏡實際觀察及追蹤粒子布朗運動的速度變化,並記錄布朗運動停止時間,即為聚合反應實際時間。最後調整UV之照射頻率,而達到更詳細之聚合反應過程,為水凝膠建立詳細聚合時間資料庫,並提供平台可達到控制過程,提升水凝膠於生醫上之應用。

並列摘要


Hydrogel is a kind of soluble polymer with network crosslinking structures which is applied to biomedical applications by absorbing massive water molecules. Photoinitiator is added and UV energy(excitation light) further polymerizes polymer into hydrogel. But , duration of irradiating influences efficiency of absorbing water and generates byproduct causing pollution. Controlling duration of hydrogel polymerization is very important. To date, there is no related researches observing in real-time and analyzing polymerization process of hydrogel. Gold nanoparticles as usual biosensors are abundant in scattering and brownian motion properties in liquid. Scattering and Brownian motion of gold particles can be observed by the dark-field microscope and be biosensors of various liquid environment by tracking motion locus and analyzing speed variation. Analyzing speed variation of Brownian motion before and after polymerization of hydrogel can be a reference of polymerization of duration. In this study, gold nanoparticles are regarded as an optical sensor, adding various percentage of polymer acquires the most proper ratio. And adding photoinitiator of various concentration with UV energy polymerizes polymer to hydrogel. Adjusting spectra, energy, particle size analyzes response of polymerization and the dark-field microscope is utilized to observe and track speed variation of particles due to Brownian motion in real-time. Recording terminal of Brownian motion represents the duration of polymerization process. Finally, frequency of UV light is adjusted to achieve to acquire more specific polymerization process. And detailed database of polymerization duration of hydrogel is built up to provide a platform controlling the process so that hydrogel in biomedical applications is further enhanced.

參考文獻


1. Caló, E.; Khutoryanskiy, V. V., Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal 2015, 65, 252-267.
2. Lin, C. C.; Anseth, K. S., PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharmaceutical research 2009, 26 (3), 631-43.
3. Bäckström, S.; Benavente, J.; Berg, R. W.; Stibius, K.; Larsen, M. S.; Bohr, H.; Helix Nielsen, C., Tailoring Properties of Biocompatible PEG-DMA Hydrogels with UV Light. Materials Sciences and Applications 2012, 3, 425-431.
4. Adnan, M.; Hani, A. A.; Hussain, M. A.; Musab, A.; Fozia Al, N.; Faten, A.-H.; Rahmi, O.; Ali, K., Hydrogels 2.0: improved properties with nanomaterial composites for biomedical applications. Biomedical Materials 2016, 11 (1), 014104.
5. Thoniyot, P.; Tan, M. J.; Karim, A. A.; Young, D. J.; Loh, X. J., Nanoparticle–Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi-Functional Materials. Advanced Science 2015, 2 (1-2), 1400010-n/a.

延伸閱讀