透過您的圖書館登入
IP:18.188.111.130
  • 學位論文

低損耗的金奈米團簇之光物理性質運用於發光太陽能聚光器

Photophysical properties of gold nanoclusters for low-loss luminescent solar concentrators

指導教授 : 院繼祖
本文將於2024/07/17開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


發光太陽能聚光器(LSC)由發光體收集太陽光波導至側邊太陽能板所組成。通常LSC中的發光體負載濃度受到嚴格的限制,以減輕Concentration-induced quenching (CIQ)、再吸收損失(Reabsorption losses)、Aggregation-induced scattering(AIS),本研究論文為了解決上述問題,首先利用金奈米團簇(GSH-AuNCs)有大的Stoke-shift、低再吸收的特性,製成膜時將GSH-AuNCs分散在Polyvinylpyrrolidone (PVP)高分子製備具有不同濃度負載的LSC。在26wt%的高負載濃度下,量子產率PL-QY增強至~25%(水溶液僅有1%),歸功於有良好的ligand-matrix有效抑制非輻射複合,增強其輻射複合的過程。此外,本研究高濃度(~74wt%)仍維持良好的薄膜均勻性與光學特性,並無AIS效應,同時保有極小再吸收與散射,讓側邊發光效率可維持在~70%、在400nm波長下外部量子產率約15%。

並列摘要


A Luminescent Solar Concentrator (LSC) consists of a polymeric or glassy optical waveguide doped with highly emissive fluorophores. Following light absorption, LSC luminophores re-emit photons which are then guided to edges of the device, where solar cells are attached. Generally, the loading concentration of luminophores in LSC is strictly limited to reduce concentration-induced quenching (CIQ), reabsorption loss and aggregation-induced scattering (AIS). In order to solve the aforementioned problems, this research study utilized Gold Nanoclusters (GSH-AuNCs). GSH-AuNCs has large Stoke-shift and low reabsorption characteristics. GSH-AuNCs were dispersed in suitable Polyvinylpyrrolidone (PVP) polymer in order to prepare LSC with different concentration loading. Even at a high loading concentration of 26wt%, the quantum yield PL-QY is enhanced up to ~25% (only 1% in the pristine aqueous solution), thanks to the outstanding ligand-matrix effective inhibition of non-radiative recombination which enhanced the process of radiation recombination. In addition, the high concentration (~74wt%) of this research study still maintains good film uniformity and optical properties, without AIS effect, while maintaining minimal reabsorption and scattering. This phenomenon allowed the edge-emission efficiency to be maintained up to ~70% in numerical value. Furthermore, the external quantum yield is about 15% at 400 nm.

參考文獻


[1] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 48), Progress in Photovoltaics: Research and Applications, 24 (2016) 905-913.
[2] N.-G. Park, Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell, The Journal of Physical Chemistry Letters, 4 (2013) 2423-2429.
[3] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%, Progress in Photovoltaics: Research and Applications, 19 (2011) 894-897.
[4] F. Meinardi, F. Bruni, S. Brovelli, Luminescent solar concentrators for building-integrated photovoltaics, 2017.
[5] Y. Li, P. Miao, W. Zhou, X. Gong, X. Zhao, N-doped carbon-dots for luminescent solar concentrators, Journal of Materials Chemistry A, 5 (2017) 21452-21459.

延伸閱讀