透過您的圖書館登入
IP:18.219.189.247
  • 學位論文

離心力驅動微流體系統之流道設計與分析

Design and Analysis of Micro-channel for Centrifugal Force Driven Micro-fluid System

指導教授 : 陳夏宗
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


生物科技為二十一世紀重要的發展項目之一,而其中又以微流體生物晶片最具有發展潛力與運用價值。利用離心力驅動微流體具有設計簡單、可複雜化與節省能源等優點,因此近年來逐漸受到重視。在微流體的研究中大部份已利用電腦模擬以節省時間與減少錯誤發生,然而目前很少以電腦模擬應用於離心力驅動生物晶片之開發,因此本研究將以電腦模擬方式對離心力驅動生物晶片開發之可行性與正確性做出有系統的研究。 在本研究中,分別設計具有寬度300、400與500μm且深度為200μm微流道之離心力驅動生物晶片,以計算流體力學軟體CFDRC®作3D模擬分析,並針對不同微流道寬度以理論計算和實驗方式進行突破頻率計算與量測,藉以探討以離心力驅動微流體分析軟體模擬之可行性與正確性。而後再設計不同Kinematic Viscosity(1.0、2.0與3.0 mm2/s三種黏度)之試液與不同深度(200、225與250μm三種深度)之平衡槽,探討在不同的設計條件組合下對突破頻率的影響。 研究結果顯示,工作油不適用於毛細管開關之設計,同時突破頻率會隨著微流道管徑設計縮小而提高。而溢流道與溢流槽的設計具有精確的定量功能,可降低試液劑量的誤差,使試驗結果具有高度的再現性。研究中同時發現運用軟體模擬在突破頻率值方面之分析結果與理論計算值和實驗結果趨勢相當接近,成功的建立微流體流動與突破頻率模擬分析技術。同時由分析案例顯示,可正確模擬微流體流動情形,且突破頻率隨試液黏度降低與平衡槽深度加深而降低,此分析模擬結果可提供理論計算所無法描述的資料。本研究結果,證實分析模擬技術運用於離心式生物晶片的可行性,並可提供離心式生物晶片設計者一設計參考準則。

並列摘要


Biochips are the important development product in the 21st century, and the microfluid biochip has great potential. Recently, centrifugal force driven micro-fluid has been found to be an excellent fluid flow control method in biochips. Most researchers already use the computer to simulate microfluid flow behavior to save time and reduce mistakes. However, none have modelled centrifugal force driven microfluid burst frequency. Therefore this study simulates burst frequency and compares with our new experimental results. We designed and built new chips with microchannels (300μm, 400μm, 500μm width and 200μm depth). We used computational fluid dynamic software CFDRC® to do 3D model simulation of capillary switching. Our experiments verified this simulation. We tested three liquids of different kinematic viscosity (1.0mm2/s, 2.0mm2/s, 3.0mm2/s), and reservoir depths (200μm, 225μm, 250μm) to see how design conditions influence burst frequency. As a result, the oil is not suitable for the capillary switch, and when the reduce diameter of microchannel the burst frequency will rise. The design of overflow fix the liquid quantity accurately and the error <5%, it can reduce the error of experiment. In this study, the simulation result of burst frequency is the equal to theory and experiment result, the CFDRC® software can establish burst frequency analysis successful. As the cases result, the CFDRC® can simulate microfluid flow behavior exactly and the burst frequency reduced by reduce the liquid viscosity and reservoir is more depth. This study demonstrates the application of an advanced computational fluid dynamics model for the design analysis microchannel of centrifugal force driven microfluid system successfully.

參考文獻


10. R. N. Wenzel, “Resistance of Solid Surfaces to Wetting by Water”, Industrial and Engineering Chemistry, Vol. 28, 1936.
11. P. F. Man, C. H. Mastrangelo, M. A. Burns, D. T. Burke, “Microfabricated Capillarity-Driven Stop Valve and Sample Injector”, MEMS Conference, Heidelberg, Germany, Jane 1998.
12. 張珮郁, “微流元件內表面張力驅動之流體流動現象的實驗探討”, 成功大學碩士論文, 2003.
14. D. S. Kim, T. H. Kwon, “Modeling, Analysis and Design of Centrifugal Force-Driven Transient Filling Flow into a Circular Microchannel”, Microfluidics and Nanofluidics, Vol. 2, March 2006.
16. M. A. Burns, B. N. Johnson, S. N. Brahmasandra, “An integrated nanoliter DNA analysis device”, Science, 1998.

被引用紀錄


袁家驊(2010)。水火同源產品設計與流程探討〔碩士論文,朝陽科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0078-0601201112113205

延伸閱讀