透過您的圖書館登入
IP:18.223.196.59
  • 學位論文

水性聚氨基甲酸酯奈米複合材料與 有機可溶聚亞醯胺奈米複合材料 的製備及性質研究

Preparation and Properties Studies of Waterborne Polyurethane Nanocomposites and Organo-Soluble Polyimide Nanocomposites

指導教授 : 葉瑞銘
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究首先自行合成出水性聚氨基甲酸酯、有機可溶聚亞醯胺兩種高分子,以及應用此兩種有機高分子分別與無機silica、黏土(clay)應用混成(hybrid) 技術,製備成高分子奈米複合材料。利用傅立葉轉換紅外光譜儀(FTIR)、穿透式電子顯微鏡(TEM)、X-ray繞射儀(XRD)、原子力顯微鏡(AFM)、凝膠滲透層析儀(GPC)、固態29Si核磁共振儀(solid state 29Si NMR)、1H 核磁共振儀(1H NMR),鑑定高分子的結構與探討高分子奈米複合材料的形態(morphology)。 對於複材的防蝕性、機械強度、光學性質、熱性質、表面潤濕性與透氣性的探討,吾人分別利用了循環伏特安培儀(CV)、動態機械熱分析儀(DMA)、UV-Vis分光光譜儀、熱失重分析儀(TGA)、接觸角計(contact angle)與水氣穿透分析儀(VPA)進行研究。 綜合上述的儀器分析與測試,本論文之架構分為四個部份,第一部份討論一系列的水性聚氨基甲酸酯-黏土奈米複合材料測試結果,研究結果顯示,因未改質黏土的親水性優於改質後黏土,故未改質黏土在水性聚氨基甲酸酯高分子基材中呈現較佳的分散性,以致於在防腐蝕與阻氣性等各性質呈現較改質後黏土為優的結果。 第二部份敘述以水性聚氨基甲酸酯為催化劑,催化四乙氧基矽烷(TEOS)進行溶膠-凝膠(sol-gel)反應生成二氧化矽(silica),無需外加催化劑,而能獲得聚氨基甲酸酯-二氧化矽奈米複合材料。 第三部份內容為應用一階段法合成有機可溶聚亞醯胺(soluble polyimide, SPI),並將其與改質黏土以懸浮分散技術,製備成聚亞醯胺-黏土奈米複合材料(polyimide-clay nanocomposite, PCN),且PCN與SPI相較,在防腐蝕方面PCN較SPI呈現明顯優異的效果。 第四部份是敘述製備聚亞醯胺-二氧化矽-黏土奈米複合材料,以及比較二氧化矽、黏土在聚亞醯胺高分子基材中的差異性。研究結果顯示由於顆粒狀二氧化矽的長/厚比(aspect ratio)較層狀黏土為小,因此在SPI基材中黏土含量的遞增及/或二氧化矽的遞減,有助於阻氣性與防腐蝕性的增強。

並列摘要


This study first prepared two kinds of polymer of waterborne polyurethane (WPU) and organo-soluble polyimide (SPI). Subsequently, a series of hybrid materials containing silica or clay were prepared by performing the sol-gel reactions involving tetraethyl orthosilicate (TEOS) and the solution dispersion technique of montmorillonite. The as-synthesized polymers and hybrid materials were then characterized by FTIR spectroscopy, transmission electron microscopy (TEM), wide-angle powder X-ray diffraction (XRD), atomic force microscopy (AFM), gel permeation chromatography (GPC), solid state 29Si NMR and 1H NMR. The effects of material composition on the anticorrosive performance, mechanical strength, optical clarity, thermal stability, surface wettability and molecular permeability of hybrid materials was also assessed via the cyclic voltammetry (CV), dynamic mechanical analysis (DMA), UV-visible transmission spectra, thermal gravimetric analyzer (TGA), contact angle and vapour permeability analyzer (VPA), respectively. This essay comprises four parts. In the first part, a series of PU-clay nanocomposite materials were characterized and measured, showing that the PU-Na+-montmorillonite has stronger anticorrosion properties and a larger gas barrier than PU-organophilic clay,owing to the Na+-montmorillonite being more hydrophilic than organophilic clay and Na+-montmorillonite being well dispersed in the WPU matrix. Section two successfully prepares a series of PU-silica hybrid materials consisting of amino-terminated anionic WPU and inorganic silica particles via the sol-gel process without the external catalyst. Section three successfully a series of polyimide-clay nanocomposite materials (PCN), comprising of synthesized SPI, via the one-step method, and dispersed nanolayers of inorganic montmorillonite, by the solution dispersion technique. Compared to neat SPI and PCN, the PCN reduced the corrosion rate more effectively than the SPI. In the fourth parts presents as-prepared polyimide-silica-clay nanocomposites materials (PSCN), and compared the silica and clay difference in the SPI matrix. The increase in nanolayer clay content increase and/or decrease in silica content in the SPI matrix enhances the gas barrier and anticorrosion properties.

參考文獻


95. 葉嘉文,「以苯胺有機鹼催化溶膠-凝膠反應製備壓克力-二氧化矽奈米複合材料及其性質之研究」,中原大學化學所碩士學位論文,2004.
5. E. Peggion, F. Testa, C. Talamin, Makromol. Chem., 1960, 34, 62.
6. G. L. Dhummel, C. Schneider, Adv. Chem. Ser., 1962, 34, 60.
7. A. S. Dunn, P. A. Taylor, Makromol. Chem., 1965, 83, 207.
8. D. C. Lee, L. W. Jang, J. Appl. Polym. Sci., 1996, 61, 1117.

延伸閱讀