透過您的圖書館登入
IP:13.58.82.79
  • 學位論文

電活性環氧樹脂/鋅粉/還原氧化石墨烯複合材料之製備、鑑定及其在重度防蝕塗層上之應用研究

Preparation and characterization of electroactive epoxy/zinc powder/reduced graphene oxide composites material and its application in heavy-duty anticorrosion coatings

指導教授 : 葉瑞銘
本文將於2027/07/25開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


本碩士研究論文的主軸,在導入「還原氧化石墨烯 (rGO)」(利用阻氧之防蝕機制)及「電活性寡聚物」(利用鈍化金屬表面)於環氧樹脂的主鏈中,以有效降低鋅粉在環氧樹脂中的用量,來製備所合成之電活性環氧樹脂/鋅粉/還原氧化石墨烯複合塗料,預期可在冷軋鋼 (cold-rolled steel ,CRS) 重度防腐蝕應用上保持複合塗料原有的防腐蝕性能,同時可大幅降低鋅粉的用量(成本),並提升複合塗料的物理特性(如:附著性、耐磨耗特性)。 首先是材料製備,以Hummer’s method合成之氧化石墨烯(GO)並以不同高溫(300℃、1400℃)進行鍛燒得到還原氧化石墨烯(標示為rGO-300、rGO-1400 ),利用傅立葉轉換紅外光譜儀、熱重分析儀、水滴接觸角鑑定rGO中含氧官能基的多寡。再來利用氧化耦合法合成胺基封端苯胺三聚體(ACAT),並利用傅立葉轉換紅外光譜儀、液相層析質譜儀及核磁共振儀進行電活性單體結構鑑定。此外,利用紫外-可見光光譜儀及循環伏安儀確認其氧化還原特性。 將電化學分為四部份進行量測,(一)環氧樹脂/鋅粉 (二)環氧樹脂/還原氧化石墨烯及環氧樹脂/還原氧化石墨烯/鋅粉 (三)電活性環氧樹脂及電活性環氧樹脂/鋅粉 (四)電活性環氧樹脂/還原氧化石墨烯/鋅粉。 第一部分以含有80wt%鋅粉之環氧樹脂塗層具有最佳防腐蝕效果 (80wt% > 60wt% > 40wt% > 20wt%),將此含80wt%鋅粉之環氧樹脂之「腐蝕電位值」定為目標。 第二部份為探討導入0.5wt%的rGO-300或rGO-1400於環氧樹脂中可以有效取代鋅粉的比例,由實驗結果顯示:導入0.5wt%的rGO-300或rGO-1400於環氧樹脂中可以有效取代20wt%及30wt%鋅粉的比例。 第三部份為探討導入5wt%的ACAT於環氧樹脂中可以有效取代鋅粉的比例,由實驗結果顯示:導入5wt%的ACAT於環氧樹脂的主鏈中可以有效取代30wt%鋅粉的比例。 第四部份結合第二及第三部份結果,證實同時導入0.5wt% rGO-300及5wt% ACAT於環氧樹脂的主鏈中可以有效取代50wt% 鋅粉的比例;若同時導入0.5wt% rGO-1400及5wt% ACAT於環氧樹脂的主鏈中可以有效取代60wt% 鋅粉的比例。 接著驗證塗層材料之機械性質,從研究的結果顯示,電活性環氧樹脂/還原氧化石墨烯/鋅粉塗層具有比高鋅粉含量之環氧樹脂/鋅粉更佳的物性,證實在維持相似的防腐蝕條件下,電活性環氧樹脂/還原氧化石墨烯/鋅粉塗層具有更優異「附著力」(ASTM-D3359)及「耐磨耗能力」(ASTM-D4060)。 最後以「鹽霧試驗」(ASTM-B117) 證實塗料之耐腐蝕性能,電活性環氧樹脂/還原氧化石墨烯/鋅粉塗層具有與高鋅粉含量之環氧樹脂/鋅粉相似之防腐蝕性質,甚至更優異,是因為電活性環氧樹脂/還原氧化石墨烯/鋅粉塗層同時具有rGO之氧氣阻隔特性;ACAT具有氧化還原特性,使金屬表面氧化產生鈍性金屬氧化層;鋅粉提供塗層犧牲陽極層等優點。

並列摘要


The main target of this master's research thesis is the introduction of "reduced graphene oxide (rGO)" (using the anticorrosion mechanism of oxygen barrier) and "electroactive oligomers" (using the passivation of the metal surface) into the main chain of the epoxy resin (ER) to effectively reduce the amount of zinc powder in epoxy resin to prepare the synthesized electroactive epoxy resin/zinc powder/reduced graphene oxide composites coating, which is expected to be used in heavy-duty anticorrosion applications of cold-rolled steel (CRS),which can maintain the original anti-corrosion performance of the composite coating, at the same time can greatly reduce the amount (cost) of zinc powder, and improve the physical properties of the composite coating (such as: adhesion, wear resistance). In terms of materials, the traditional oxidative coupling reaction was used to synthesize amino-terminated aniline trimers (ACAT), and FT-IR, LC-MS and NMR were used to identify the structure of electroactive monomers. In addition, UV-Visible spectrometer and CV were used to confirm its redox characteristics. Graphene oxide (GO) synthesized with Hummer's method was calcined at different high temperatures (i.e., 300℃, 1400℃) to obtain reduced graphene oxide (Labeled as rGO-300 and rGO-1400), and the FT-IR, TGA and water drop CA were used for identification the number of oxygen-containing functional groups in rGO. The electrochemical measurements are divided into four parts for measurement, (1) ER/zinc powder (2) ER/reduced graphene oxide and ER/reduced graphene oxide/zinc powder (3) electroactive ER and electroactive epoxy resin/zinc powder (4) electroactive epoxy resin/reduced graphene oxide/zinc powder. In the first part, the ER coating containing 80wt% zinc powder has the best anticorrosion effect (80wt% > 60wt% > 40wt% > 20wt%). The "corrosion potential value" of epoxy resin with 80wt% zinc powder is set as the target.The second part is to investigate the proportion of 0.5wt% of rGO-300 or rGO-1400 that can effectively replace zinc powder in ER. The experimental results showed that the introduction of 0.5wt% of rGO-300 or rGO-1400 in the ER can effectively replace the proportion of 20wt% and 30wt% of zinc powder.The third part is to discuss the proportion of 5wt% of ACAT in the main chain of ER that can effectively replace zinc powder in ER. The experimental results show that: 5wt% of ACAT in main chain of ER can effectively replace 30wt% of zinc powder.The fourth part combines the results of the second and third parts, it is confirmed that the simultaneous introduction of 0.5wt% of rGO-300 and 5wt% of ACAT in the main chain of ER can effectively replace the ratio of 50wt% of zinc powder; introduction of 0.5wt% of rGO-1400 and 5wt% of ACAT can effectively replace 60wt% of zinc powder in the main chain of ER. Subsequently, the mechanical properties of as-prepared ER composite coatings were investigated. From the research results, it is shown that the electroactive epoxy resin/reduced graphene oxide/zinc powder coating has better physical properties than the epoxy resin/zinc powder with high zinc powder content, which confirms that similar corrosion protection conditions are maintained. The electroactive epoxy resin/reduced graphene oxide/zinc powder coating has better "adhesion"(ASTM-D3359) and "wear resistance"(ASTM-D4060). Finally, the "salt spray test" (ASTM B-117) was used to confirm the corrosion resistance of the coating, the electroactive epoxy resin/reduced graphene oxide/zinc powder coating has similar anti-corrosion properties to the epoxy resin/zinc powder with high zinc powder content, and even better, because the electroactive epoxy resin/reduced graphene oxide/zinc powder coating also has the gas barrier properties of rGO; ACAT has redox properties that oxidize metal surfaces to produce passive metal oxide layers; zinc powder provides the advantages of coating sacrificial anode layer and so on.

參考文獻


[1]B. Wang, A. Gungor, A. B. Brennan, D. E. Rodrignes, J. E. Mcgrath,G. L. Willkes, Polym. Prep., 1991, 32, 521
[2]Y. Wei, R. Bakthavatchalam, D. Yang, C. K. Whitecar, Poly. Prep.,1991, 32, 503
[3]C. J. T. Lanrry, B. K. Coltrain, Poly. Prep. Am. Chem. Soc. Div. Polym. Chem., 1991, 32, 514
[4]L. A. David, G. W. Scherer, Polym. Prep., 1991, 23, 338
[5]Yuko Ikedam, Polymer., 1997, 38, 4417

延伸閱讀