透過您的圖書館登入
IP:3.15.226.248
  • 學位論文

多元醇改質程序對奈米沸石/聚丙烯腈複合膜滲透蒸發效能之影響

Effect of polyols modification process on pervaporation performance of nanozeolite/PAN composite membrane

指導教授 : 李魁然 蔡惠安

摘要


隨著半導體產業的快速發展,產業對於晶圓需求量大為增加,而被使用於清潔晶圓的溶劑其需求量也隨之增加,這些溶劑通常都具有低沸點、易揮發等特性,例如:正甲基吡咯烷酮 (NMP)、甲基乙基酮 (MEK)或異丙醇 (IPA)等有機溶劑。但是大量有機廢液的排放導致水污然更加嚴重,而有機廢液的處理目前又以較高耗能的蒸餾法和較高汙染的焚化法,兩者為主要方法。 因此,本研究希望透過低能耗、對環境污染小的方式回收這些有機溶劑,同時於工業發展、環境保護與水資源的三方問題中找到解決方法。在本研究中,製備超薄奈米複合 (TFN)聚醯胺膜,並將其應用於異丙醇水溶液之脫水程序;聚醯胺層是通過二亞乙基三胺 (DETA)和均苯三甲醯氯 (TMC),在水解聚丙烯腈基材膜 (m-PAN)上透過界面聚合法製備而成。 研究中將天然奈米沸石 (NZ)和改質後奈米沸石分別加入界面聚合單體溶液中並透過界面聚合法製備奈米複合薄膜;因受到界面聚合層之成長方向的影響,將改質後奈米沸石添加於有機相溶液中製備薄膜能夠有較佳的選擇性,並探討因沸石具有特殊水通道而產生的篩分效應對複合薄膜分離效能之影響。NZ 使用氫氧化鈉 (NaOH)或碳酸氫鈉 (NaHCO3)進行鹼處理,以改善沸石在 TMC/正己烷溶液中的分散性。並採用全反射傅里葉轉換紅外光譜 (ATR-FTIR)、X射線光電子能譜 (XPS)、水接觸角量測儀 (WCA)和場發射掃描電子顯微鏡 (FESEM)對薄膜進行鑑定。 利用 15 wt%聚丙烯腈為基材膜,添加經碳酸氫鈉溶液改質之天然沸石於有機相溶液中,以界面聚合法製備之複合薄膜 (TFNNaHCO3-NZ),表現出最佳的分離效能。於25℃ 下,以 70wt%異丙醇水溶液為進料液進行滲透蒸發分離程序,研究結果顯示,其透過通量與透過水濃度分別為 1,869 g·m-2·h-1 和 99.09 wt%。此外,經過長時間穩定性測試後薄膜仍保持良好的分離效能,顯示其具有可長期使用的穩定性。 並且,再透過使用三種不同結構多元醇,即:D-山梨糖醇 (DST)、季戊四醇 (PET) 和內消旋赤蘚糖醇 (ERT),對奈米複合聚醯胺膜(TFNNaHCO3-NZ)進行後處理,以透過羥基官能化膜表面進一步提高對IPA水溶液之脫水效能,並採用ATR-FTIR、XPS、WCA和FESEM對薄膜進行鑑定。因多元醇對薄膜表面官能化程度受其結構影響,其中又以DST進行後處理之複合薄膜因具有結構特性,TFN5wt%DST-NaHCO3-NZ表現出最佳的滲透蒸發分離效能,於25℃ 下,對70 wt%異丙醇水溶液進行分離程序,其透過通量為 3,098 g·m-2·h-1、透過水濃度為 99.74wt%。因此,可以透過本研究的多元醇改質程序製備一高效複合膜應用於滲透蒸發分離程序中,並且在長期操作下仍具有良好的分離效能。

並列摘要


The demand for silicon wafer rapidly increasing with the rapid development of semiconductor industry. Common cleaning agent are n-methylpyrrolidone, methy ethyl ketone, or isopropanol (IPA) which is consumed in huge amout. Reusing and recycling of waste IPA can reduce the overall cost of process, discharge of waste in environment, and energy consumption. Membrane technology proposes a promising solution for recovery of IPA through pervaporation. However, current performance of most membranes for pervaporation are in need to improve the efficiency to meet the industrial demand. In this work, thin-film nanocomposite (TFN) polyamide membrane was used for dehydration of IPA aqueous solution. The polyamide layer was fabricated through interfacial polymerization between diethylenetriamine (DETA) and trimesoyl chloride (TMC) on top of hydrolyzed polyacrylonitrile support. Pristine nanozeolite (NZ) and modified nanozeolite were embedded separately into the polyamide layer. Natural zeolite was extracted in the Philippine mountains and converted to NZ (mordenite clinoptilolite). NZ undergone alkaline treatment using either NaOH or NaHCO3 to improve its dispersion into the TMC/n-hexane solution. This research consists of three parts: (1) determining the optimum condition to incorporate the alkaline-treated nanozeolite (MNaOH-NZ) in the polyamide layer; (2) study and compare the two types of alkaline solution (NaOH vs NaHCO3) to modify NZ; and (3) post-treatment of the TFC/TFN membrane surface using different structure of polyols, to study their influence on membrane performance. The prepared TFC and TFN membranes were characterized by using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), x-ray photoelectron spectroscopy (XPS), water contact angle instrument, and field emission scanning electron microscope (FESEM). Results showed that at the optimal condition, TFNNaHCO3-NZ exhibited the highest membrane performance of 1,869 g·m-2·h-1 and 99.09 wt% water concentration (feed = 70 wt% aqueous isopropanol solution at 25℃). In addition, the modified membrane had a stable performance for long-term use. Therefore, suitable alkaline treatment for NZ could enhance pervaporation performance. Furthermore, three types of polyols namely: D-sorbitol (DST); pentaerythritol (PET); and meso-erythritol (ERT); were used to post-treat TFN polyamide membranes to improve the IPA dehydration performance. It was found out that using DST as post-treatment polyol exhibited an enhanced pervaporation performance. Overall, TFN5wt%DST-NaHCO3-NZ exhibited the highest membrane performance of 3,098 g·m-2·h-1 permeation flux and 99.74 wt% water concentration in permeate (feed = 70 wt% aqueous isopropanol solution at 25℃). Therefore, post-treatment using polyols can further enhance the separation efficiency of TFN membranes with a stable performance and long-term use.

參考文獻


[1] F. McLeay, V.S. Osburg, V. Yoganathan, A. Patterson, Replaced by a Robot: Service Implications in the Age of the Machine, Journal of Service Research 24(1) (2021) 104-121.
[2] G. Di Baldassarre, N. Wanders, A. AghaKouchak, L. Kuil, S. Rangecroft, T.I. Veldkamp, M. Garcia, P.R. van Oel, K. Breinl, A.F. Van Loon, Water shortages worsened by reservoir effects, Nature Sustainability 1(11) (2018) 617-622.
[3] W. Den, C.-H. Chen, Y.-C. Luo, Revisiting the water-use efficiency performance for microelectronics manufacturing facilities: Using Taiwan’s Science Parks as a case study, Water-energy nexus 1(2) (2018) 116-133.
[4] L.M. Vane, Separation technologies for the recovery and dehydration of alcohols from fermentation broths, Biofuels, Bioproducts and Biorefining 2(6) (2008) 553-588.
[5] A. Kayvani Fard, G. McKay, A. Buekenhoudt, H. Al Sulaiti, F. Motmans, M. Khraisheh, M. Atieh, Inorganic membranes: Preparation and application for water treatment and desalination, Materials 11(1) (2018) 74.

延伸閱讀