透過您的圖書館登入
IP:3.135.205.146
  • 學位論文

利用常壓化學氣相沉積法合成免轉移石墨烯之電性傳輸研究

Study on Electronic Transport Properties of Transfer-Free Graphene Synthesized by APCVD

指導教授 : 莊家翔

摘要


石墨烯在絕緣基板上的大面積和無轉移生長是實現石墨烯元件商業應用的第一步。雖然在催化金屬上利用化學氣相沉積( CVD)可以產生大面積的石墨烯,但將此方法生長的石墨烯轉移到所需的基材上是不可避免的。這項工作的重點是直接在 SiO2 上的直接成長鎳催化石墨烯之拉曼分析和優化。根據結果,低缺陷、高均勻性(~90%)和大面積石墨烯(公分尺寸)顯示了以 CH4 作為碳源進行鎳誘導石墨成長的可行性。 此外,從低溫(75 K)到室溫(300 K)的石墨烯載子遷移率(carrier mobility)分別為~11300 cm2 / V·S和~ 750 cm2 / V·S。同時,還揭示了隨溫度變化的電子輸運特性和磁阻特性 (從6.5 K到室溫)。 在這項研究中,免轉移石墨烯已被成功驗證,並在下一代電子產品中顯示出高度的商業應用潛力。

並列摘要


Large-area and transfer-free growth of graphene on insulating substrates is a promising step towards enabling commercial applications of graphene-based devices. While CVD-based synthesis on catalytic metals can produce large areas of graphene, a transfer process is indispensable to deposit the as-grown graphene onto desired substrates. This work focuses on the Raman analysis and optimization of nickel-catalyzed graphene growth directly on SiO2. According to the results, the low-defect, high uniformity (~90%) and large-area graphene (cm-sized) showed the feasibility of nickel-induced graphitization with CH4 as a carbon source. In addition, the carrier mobility (carrier mobility) from low temperature (75K) to room temperature (300K) are ~ 11300 cm2 / V·S and ~ 750 cm2 / V·S respectively. At the same time, the temperature dependence (from 6.5 K to room temperature) of electronic transport properties and magnetoresistance also were revealed. In this study, transfer-free graphene has been demonstrated successfully and showed the high potential for commercial applications in the next generation of electronics.

參考文獻


[1] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, "C 60: buckminsterfullerene," nature, vol. 318, no. 6042, pp. 162-163, 1985.
[2] S. N. Iijima, 1991, 354: 56.
[3] K. S. G. Novoselov, A. K.; Morozov, S. V.; Jiang, D.; Zhang,, S. V. G. Y.; Dubonos, I. V.; Firsov, A. A. Science, 2004,, and 666.
[4] C. G. W. Lee, X. D.; Kysar, J. W.; Hone, J. Science, 2008, 321 and 385.
[5] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, "Intrinsic and extrinsic performance limits of graphene devices on SiO 2," Nature nanotechnology, vol. 3, no. 4, pp. 206-209, 2008.

延伸閱讀