透過您的圖書館登入
IP:18.119.139.104
  • 學位論文

運用田口法優化垂直式風機之設計

Optimal Design of Vertical Axis Wind Turbine by Using Taguchi Method

指導教授 : 許政行

摘要


本論文主要目的為運用田口法發展葉片幾何特性之設計,以改良風力機葉片空氣動力學效能,利用田口法規則收集並分析四種影響空氣動力特性之因子:扭角、弦長、葉片數量及縱橫比,並找出最佳之因子組合。 本論文聚焦於探討較佳之設計以改良垂直軸風力機之發電效率,使用之設計與比較之模型為常用之H型垂直軸風力機(VAWT),此H型風機也是作為修改前後之效能比較的基準。運用ANSYS模擬分析風力機之流場與功率係數,並運用軟體提供之六自由度(SDOF)計算法則,模擬風力機由暫態至穩態之過程,並與常規H型垂直軸風力機之實驗數據做比較。 最後以田口法尋找風機葉片之最佳化組合,結果顯示最佳化後的葉片之空氣動力學特性均優於起始之基準葉片,而模擬後發現第八組之組合(扭角、弦長、葉片數及高寬比依序為60度、8公分、3 葉片及1.0)為最佳組合,且發電量達到十三瓦特,其他之組合發電量均小於十瓦特。

並列摘要


This study is to develop design blades with better aerodynamic performance. By using Taguchi method to study the influence of geometric on aerodynamic performance, and the best combination of factors. Four different factors affecting the aerodynamic characteristics are discussed: twist angle, chord length, number of blade, and aspect ratio. This study focuses on exploring a better design to improve the power coefficient of vertical axis wind turbine. A conventional H-type Vertical Axis Wind Turbine (VAWT) model is used as baseline in this study to compare the power output against the modified VAWT designs. The ANSYS commercial software is used to calculate the flow fields and power coefficient of VAWT. The ANSYS software using Six Degree of Freedom (SDOF) to simulate the turbine starting from stationary, transient to steady state process. The Taguchi method is used as an evaluation tool to find the optimum blade design within the prescribed range of design variable values under consideration. The aerodynamic characteristics of the optimized blade are better than the non-optimized blades. The optimum blade design combination given by Taguchi method obtains the highest power in steady state is the case 8 with 13 Watt, and the maximum power for other cases is less than 10 watt.

參考文獻


[1] Types of wind turbines & their advantages & disadvantages. http://kohilowind.com/kohilo-university/202-types-of-wind-turbines-their-advantages-disadvantages/.
[2] Möllerström, E., Larsson, S., Ottermo, F., Hylander, J., & Baath, L. (2014). Noise propagation from a vertical axis wind turbine. Conference: inter.noise2014.
[3] Carr, L. (1985). Dynamic stall progress in analysis and prediction. 12th Atmospheric Flight Mechanics Conference
[4] Ferreira, C. S., Kuik, G. V., Bussel, G. V., & Scarano, F. (2008). Visualization by PIV of dynamic stall on a vertical axis wind turbine. Experiments in Fluids, 46(1), 97-108.
[5] Gerakopulos, R., Boutilier, M., & Yarusevych, S. (2010). Aerodynamic Characterization of a NACA 0018 Airfoil at Low Reynolds Numbers. 40th Fluid Dynamics Conference and Exhibit.

延伸閱讀