透過您的圖書館登入
IP:18.191.46.36
  • 學位論文

透過摻雜技術提升鈉離子電池Na3V2(PO4)2F3正極材料之特性研究

Doping Effects on Na3V2(PO4)2F3 Cathode Materials for Sodium-Ion Batteries

指導教授 : 劉偉仁
本文將於2024/07/22開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


因近幾年便攜式電子設備的快速發展,鋰離子電池的需求量提升,使生產成本也隨之上升。而鋰資源須仰賴部分國家提供,如南美、北美和中國,也使之更加珍貴。鈉離子電池被視為鋰離子電池的替代儲能裝置之一,因此,鈉離子電池的發展在近年來逐漸被重視。但由於鈉離子之半徑 (1.02 Å) 大於鋰離子 (0.76 Å) 之離子半徑,影響離子在電池中的傳遞表現,使離子在電化學反應遷入遷出時容易產生體積變化導致結構變動。這些均使鈉離子電池在商業化開發上,仍存在許多挑戰。而本團隊選擇了具有高度共價三維結構與極高熱穩定性之Na3V2(PO4)2F3 (NVPF)鈉電池正極材料作為本實驗之研究主題,希望能夠提供較佳之條件,以便鈉離子更容易進出結構框架。 首先,在此篇論文中,第一章及第二章描述了鈉離子電池之基本概念,以及正極材料之發展和最近的研究方向。第三章為本實驗中所使用的化學藥品和儀器之說明以及製備NVPF以及組裝電池之過程。第四章則是對NASICON (Sodium Superionic Conductor) 結構之Na3V2(PO4)2F3鈉電池正極材料分為三大主題進行討論:(1) 最佳製備方法、(2) 合成配方最適化以及 (3) 過渡金屬摻雜。經實驗與測試結果,證明NVPF在改良後有更加優異之電化學表現。期許在缺乏鋰金屬的未來,NVPF將成為最具有發展潛力的鈉離子電池儲能材料。 本研究使用溶膠凝膠法成功製備出純相之NVPF,再針對合成配方做調整與優化。我們在合成過程中調整了添加氟化鈉的比例並討論增加後對NVPF的影響以及電性表現。實驗結果發現,添加比例提升後,在快速充放電的表現明顯提升。在1C的充放電速率下,氟過量之樣品可以由原樣品的57 mAh/g提升至90.3 mAh/g。 本研究進一步將NVPF透過鉻摻雜取代材料中部分的釩,並進行鈉離子電池組裝,期望提升其快充能力表現。X光繞射儀和穿透式電子顯微鏡數據顯示了高純度之NASICON氟磷酸鹽材料和無定型碳的包覆,增加了複合電極材料的電子傳導性。鉻摻雜於Na3V2(PO4)2F3之最佳摻雜比例為3 mol.%,在掃描式顯微鏡及穿透式顯微鏡中,發現材料表面產生許多空隙,BET結果也與其一致,證實了表面積和孔體積之增加,使之提供更加足夠之空間緩衝電化學反應過程中所造成的體積膨脹。 除了鉻的摻雜之外,本實驗還嘗試了其他過渡金屬的摻雜測試,我們選用了鋁作為第二個摻雜之元素,並進行鈉離子電池組裝與電化學特性分析。透過X光繞射儀顯示了高純度之NVPF,並無因為摻雜而破壞NVPF之結構。而由掃描式顯微鏡中觀察到大量可見的孔洞及無定型碳包覆,增加了複合電極材料的電子傳導性。鋁摻雜於Na3V2(PO4)2F3之最佳摻雜比例為7 mol.%。BET結果也與其一致,證實了表面積和孔體積之增加,提升材料與電解液之接觸面積,提供足夠空間緩衝反應過程中所造成的體積膨脹,利於後續之電化學表現。

並列摘要


The demand of green energy has rapidly increased in these years, particularly for the on-going massive demand for electric and plug-in hybrid vehicles. The main limiting factor of lithium-ion battery arises from the limited resource of lithium metal availability in the world. During recent decades, sodium-ion batteries (SIBs) have been regarded as a promising alternative to lithium-ion batteries as a result of their advantages, such as abundancy, low cost, safety and high-power energy storage. In this regard, present investigation focused on the synthesis and development of Na3V2(PO4)2F3 as a cathode material for sodium-ion battery application. Na3V2(PO4)3 (NVP) and Na3V2(PO4)2F3 (NVPF) are known as two appealing NASICON-type materials capable of motivating intercalation chemistry for sodium ions. This research provides a step-by-step improvement for NASICON-type Na3V2(PO4)2F3 sodium-ion battery cathode materials. It involves finding the optimal concentration suitable for the sol-gel method and evaluating the best dopant for NVPF. The electrochemical tests revealed that C-rate performance was enhanced when an excess of sodium fluoride (NaF) was used. The batteries obtained capacities of 72.8 and 98.7 mAh/g for standard and excess NaF content, respectively when cycled back to 0.1C. In addition, ionic conductivity and diffusion of NVPF was improved by doing it with chromium and aluminum. X-ray diffraction and transmission electron microscopy confirm that high purity doped NVPF samples were obtained. Furthermore, electronic conductivity was augmented through amorphous carbon coating. The results indicate that NVCrPF-0.03 and NVAlPF-0.07 provided.

參考文獻


[1] J. Barker, M. Saidi, R. Gover, P. Burns, A. Bryan, The effect of Al substitution on the lithium insertion properties of lithium vanadium fluorophosphate, LiVPO4F, Journal of Power Sources 174(2) (2007) 927-931.
[2] J. Barker, M. Saidi, J. Swoyer, A sodium-ion cell based on the fluorophosphate compound NaVPO4 F, Electrochemical and Solid-State Letters 6(1) (2003) A1-A4.
[3] B. Ellis, T. Ramesh, W. Rowan-Weetaluktuk, D. Ryan, L. Nazar, Solvothermal synthesis of electroactive lithium iron tavorites and structure of Li2FePO4F, Journal of Materials Chemistry 22(11) (2012) 4759-4766.
[4] R. Gover, A. Bryan, P. Burns, J. Barker, The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3, Solid State Ionics 177(17-18) (2006) 1495-1500.
[5] C. Fang, Y. Huang, W. Zhang, J. Han, Z. Deng, Y. Cao, H. Yang, Routes to high energy cathodes of sodium‐ion batteries, Advanced Energy Materials 6(5) (2016) 1501727.

延伸閱讀