透過您的圖書館登入
IP:216.73.216.180
  • 學位論文

錫/銅-錳之界面反應

interfacial Reactions at the Sn/Cu-Mn couples

指導教授 : 陳志吉

摘要


覆晶構裝(Flip Chip)為目前電子構裝中重要技術之一,而其中Cu金屬下凸塊(Under bump metallurgy,UBM)為覆晶構裝最重要的部分,由於此部位與Sn容易快 速反應造成Cu大量消耗,在此期間容易造成柯克孔洞生成(Kirkendall),其對銲點可靠度,具有負面影響,而添加第三B族元素有助於抑制孔洞生成。本研究主要是系統性探討Mn的添加對Sn/Cu系統的影響,並研究界面反應中所生成之三元相(Ω相)是否為熱力學穩定相。 在Sn/Cu-(10~40)wt%Mn於250oC之液/固界面反應中,當Mn含量為10wt%Mn時發現靠近銲料端,其晶粒皆為細小(Cu,Mn)6Sn5,而基材有大顆Cu6Sn5以及細小(Cu,Mn)6Sn5,探討其反應機制。在400oC之液/固界面反應中,則是發現三元相(Ω相),利用其原子比例去比較得知Sn、Cu擴散速度較Mn快。 三元相(Ω相)之相平衡實驗確定Ω相為熱力學穩定相,並建構Ω相之XRD繞射峰2theta之位置。其他部分之相平衡決定3個三相區,8個兩相區及8個單相區,而Cu3Sn、Cu6Sn5對Mn最大溶解度分別為6.5at%、4.1at%。MnSn2對Cu之最大溶解度為4.4at%。

關鍵字

錫/銅-錳 三元相

並列摘要


Flip Chip is one of the important technology in Electronic Packaging, and the copper's UBM(Under bump metallurgy) is the most important part of Flip Chip, It is easy to cause Kirkendall to be generated during UBM and Sn causes a rapid reaction which has a negative effect for solder joint reliability. However, adding third element can suppress Kirkendall. The purpose of this study was to investigate the addition of Mn affect Sn / Cu system. The tiny grain of (Cu,Mn)6Sn5 is found near solder and, the large grain of Cu6Sn5 and the tiny grain of (Cu,Mn)6Sn5 are found near substrate when content of Mn was 10wt% in the liquid / solid interface reaction of Sn / Cu- (10 ~ 40) wt% Mn at 250oC, and the reaction mechanism is discussed. At 400oC in the liquid / solid interface reaction, it is found that in the ternary phase, using its atomic ratio to compare Sn & Cu & Mn diffusion rate, Cu is the slowest. The phase equilibria of Ω phase is the steady phase of Thermodynamics, and construct the 2theta position of XRD diffraction peak of the Ω phase. Other portions of the phase equilibria had 3 three-phase, eight two-phase and eight single-phase.Finally, maximum solubility of Mn in Cu3Sn and Cu6Sn5 were 6.5at%, 4.1 at%, respectively. Maximum solubility of Cu in MnSn2 was 4.4 at%.

並列關鍵字

Sn/Cu-Mn Ternary phase

參考文獻


[38] 林信甫, 無鉛銲料與鈀-銀導體之界面反應及錫-鈀-銀三元系統相平衡, 中原大學化工所 碩士學位論文, (2012).
[5] P. E.Hovsepian,D.B.Lexis,Recent progress in large scale manufacturing of multilayer/superlattice hard coatings, (2000).
[7] P.J. Ding, W.A. Lanford, S. Hymes, S.P. Murarka, J. Appl. Phys,Thermal annealing of buried Al barrier layers to passivate the surface of copper films, (1994).
[10] C. Wagner, Mathematical theory of the faradaic admittance, (1952).
[11] Christopher J. Wilson , Henny Volders b Kristof Croes , Marianna Pantouvaki , Gerald P. Beyer , In situ X-ray diffraction study ofself-forming barriers from a Cu–Mn alloy in 100 nm, (2010).

延伸閱讀


國際替代計量