透過您的圖書館登入
IP:18.226.96.61
  • 學位論文

大鼠骨髓間葉幹細胞於聚鄰甲氧基苯胺 / 聚己內酯同軸靜電紡絲之神經分化探討

The Study of Neuronal Differentiation of Rat Bone Marrow Mesenchymal Stem Cells on Poly-(o-methoxyaniline) / Poly(ε-caprolactone) Coaxial Electrospun Fibers

指導教授 : 李文婷

摘要


導電高分子如聚苯胺、聚吡咯不易被加工成纖維,而同軸靜電紡絲可以製 備出具有殼核結構的纖維,可將不易被電紡的殼層材料與易被電紡的核層材料 組合在一起。本研究利用靜電紡絲技術成功製備聚鄰甲氧基苯胺 (Poly-(o-methoxyaniline), POMA) 為殼層,聚己內酯為核層的同軸電紡絲 PA / PC,並摻雜樟腦磺酸 (Camphorsulfonic acid, CPSA) 製備成 C-PA / PC 電紡絲。最後評估大鼠骨髓間葉幹細胞 (Mesenchymal stem cell, MSCs) 在此電紡絲上生長及神經分化能力。穿透式電子顯微鏡 (Transmission electron microscopy, TEM) 影像中可觀測到 PA / PC 與 C-PA / PC 電紡絲具有雙層結構的特性,其纖維直徑分別為 194±37 nm (核:177±6 nm;殼:14±3 nm) 及 199±31 nm (核:172±8 nm;殼:16±2 nm)。傅立葉轉換紅外線光譜分析 (Fourier transform infrared spectroscopy, FTIR) 與熱重分析儀 (Thermogravity analysis, TGA) 分析顯示同軸電紡絲含有 POMA 及 PCL 的特徵峰質與熱裂解溫度值 (Decomposition temperature, Td)。接觸角試驗顯示摻雜 CPSA 可增加電紡絲表面的親水性。循環伏安法 (Cyclic voltammeter, CV) 證實 PA / PC 及 C-PA / PC 電紡絲均保有 POMA 的電活性。四點探針分析發現摻雜 CPSA 的 C-PA / PC 電紡絲的導電率較 PA / PC 電紡絲高。掃描式電子顯微鏡 (Scanning electron microscopy, SEM) 觀察發現 C-PA / PC 及 PA / PC 電紡絲不具降解能力,長期浸泡在培養基中會使纖維膨脹。在巨觀與微觀的力學分析結果發現 PA / PC 電紡絲的延展性較 C-PA / PC 電紡絲良好。MTS 分析、螢光染色及 SEM 影像中均顯示此纖維對於 MSCs 具有良好的生物相容性,且可作為神經細胞分化的支架,早期神經分化標記 βⅢ-tubulin 表現以 C-PA / PC 電紡絲較佳,晚期神經分化標記 MAP-2 表現則以 PA / PC 電紡絲較佳。

並列摘要


Conductive polymers such as polyaniline and polypyrrole are known for their difficulty for fiber processing. With coaxial electrospinning, core-shell fibers may comprise of an electrospinnable core material and a non-electrospinnable shell material. Here, core–shell structured poly(ε-caprolactone) (PCL)-poly(o-methoxyaniline) (POMA) (PA/PC) nanofibers were successfully prepared by coaxial electrospinning technique. PA/PC fibers were doped with camphorsulfonic acid (CPSA) to form C-PA/PC nanofibers. Cell proliferation and neural differentiation of mesenchymal stem cells (MSCs) from rat bone marrow were studied on PA/PC and C-PA/PC nanofibers. Transmission Electron Microscopy (TEM) images showed that the diameters of PA/PC and C-PA/PC nanofibers were 194±37nm (core: 177±6 nm; shell: 14±3 nm) and 199±31 nm (core: 172±8 nm; shell: 16±2 nm), respectively. Fourier Transform Infrared (FTIR) spectroscopy and Thermogravity Analysis (TGA) showed that coaxial electrospun nanofibers had characteristic wave numbers and Decomposition temperature (Td) of POMA and PCL. Contact angle analysis revealed that CPSA doping enhanced surface hydrophilicity of PA/PC nanofibers. Cyclic voltammetry (CV) analysis demonstrated electroactivity of PA/PC and C-PA/PC nanofibers. Four point probe analysis found that C-PA/PC nanofibers had higher conductivity than PA/PC nanofibers. Scanning Electron Microscopy (SEM) images showed that both nanofibers were not biodegradable. The fibers had swollen appearance after long-term immersion in culture media. Mechanical analysis at macroscopic and microscopic level found that PA/PC nanofibers had better ductility than C-PA/PC nanofibers. MTS, fluorescence staining and SEM analyses exhibited improved attachment and proliferation of MSCs on both types of nanofibers. It is feasible to use core–shell nanofibers as a scaffold for neural differentiation of MSCs as demonstrated by immunostaining with neuronal cell markers. C-PA/PC nanofibers had higher expression on early neural differentiation marker-β III tubulin, whereas PA/PC nanofibers had higher expression on late neural differentiation marker-MAP-II.

參考文獻


[10] 林冠鎰(2012)。以靜電紡絲法製備電活性聚鄰甲氧基苯胺/明膠纖維及其在組織工程之潛在應用探討。中原大學生物醫學工程研究所學位論文。
[1] Williams DF. On the nature of biomaterials. Biomaterials. 2009;30:5897-909.
[2] Zhao C, Tan A, Pastorin G, Ho HK. Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering.Biotechnology Advances. 2013;31:654-68.
[3] Place ES, George JH, Williams CK, Stevens MM. Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev. 2009;38:1139-51.
[4] Peran M, Garcia MA, Lopez-Ruiz E, Bustamante M, Jimenez G, Madeddu R, et al. Functionalized nanostructures with application in regenerative medicine. Int J Mol Sci. 2012;13:3847-86.

被引用紀錄


楊孟武(2016)。利用原子力顯微鏡量測二氧化矽及 POMA/PCL 電紡絲之力學特性〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201600795

延伸閱讀