透過您的圖書館登入
IP:18.188.40.207
  • 學位論文

金屬鋁藉由機械研磨加工後在水中水解產氫之研究

Investigation of Hydrogen Generation by Mechanically Milled Aluminum Hydrolyzed in Water

指導教授 : 何青原

摘要


利用活化後的鋁金屬在水中水解可得到一個簡單、乾淨和便宜且效率接近100%的產氫方法,在本研究中,使用純鋁粉或廢鋁罐與氯化鈉混合透過不同的機械研磨加工方法來活化鋁金屬。小粒徑的鋁可得到較高的產氫速度及氫氣產量,但溫度條件也是影響產氫能力的因素之一,因為鋁水反應為放熱反應且鋁表面氧化物生成狀況不同,除此之外,在反應過程中使用震動功能會提升產氫速度,因為鋁粉藉由震動會均勻的分散在溶液中,使各個顆粒的鋁皆參與反應。加入氫氧化鈉是一個簡單且有效促進鋁與水反應的方法,然而使用氫氧化鈉會造成產氫設備的腐蝕及環境汙染,廢鋁罐透過添加金屬(鎳、鉍)及提升反應時的溫度可有效的減少氫氧化鈉的使用,達到資源回收及減少環境汙染的目的。氧化成長動力論-線性拋物線模型首次的被引用來解釋鋁水反應鋁表面氧化物生成的情形,氧化物生成的初始階段和成長階段分別為反應速度控制機制及擴散控制機制。此外,鋁粉與氯化鈉的混和物透過極化曲線的量測來觀察在水中的腐蝕特性,較小的粒徑有著較大的腐蝕性,且隨著量測的次數而逐漸下降。

並列摘要


A simple and clean method with near 100% efficiency of hydrogen generation has been proposed because it is convenient and low cost by hydrolysis of activated aluminum particles in water. In this work, pure Al powder or Al cans mixed with salt using different mechanical milling methods is presented to create effective Al reacted surface in water and increase hydrolysis kinetics. Although, miniature Al particles can obtain high rate and amount for hydrogen generation, but temperature effect is another factor to influence generation amount due to exothermic reaction and thicken passive oxide. Furthermore, suspension of Al particles in water using vibration function could accelerate the rate of hydrogen generation due to increasing uniform reaction within individual particles. The addition of NaOH has been identified as a simple but effective for facilitating Al/water reactions. However, the use of NaOH causes problems with corrosion of system apparatus. The addition of metals (Ni, Bi) and increasing the reaction temperature causes a remarkable decrease of NaOH concentration. The linear-parabolic law is first introduced to explain Al oxidation mechanism at initial stage and growth stage for surface reaction control and diffusion control, respectively. In addition, the Al/NaCl mixtures by polarization measurement indicate that miniature Al particle size exhibits higher corrosion but gradually degrade as Al-water reaction proceeds.

參考文獻


[1] I. K. Kapdan, F. Kargi, R. Oztekin, and H. Argun, "Bio-hydrogen production from acid hydrolyzed wheat starch by photo-fermentation using different Rhodobacter sp," International Journal of Hydrogen Energy, vol. 34, pp. 2201-2207, 2009.
[2] R. F. de Souza, J. C. Padilha, R. S. Goncalves, M. O. de Souza, and J. Rault-Berthelot, "Electrochemical hydrogen production from water electrolysis using ionic liquid as electrolytes: Towards the best device," Journal of Power Sources, vol. 164, pp. 792-798, 2007.
[3] Y. Kojima, K. Suzuki, K. Fukumoto, M. Sasaki, T. Yamamoto, Y. Kawai, et al., "Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide," International Journal of Hydrogen Energy, vol. 27, pp. 1029-1034, 2002.
[4] S. M. Kotay and D. Das, "Biohydrogen as a renewable energy resource - Prospects and potentials," International Journal of Hydrogen Energy, vol. 33, pp. 258-263, 2008.
[6] O. V. Kravchenko, K. N. Semenenko, B. M. Bulychev, and K. B. Kalmykov, "Activation of aluminum metal and its reaction with water," Journal of Alloys and Compounds, vol. 397, pp. 58-62, 2005.

延伸閱讀