透過您的圖書館登入
IP:18.116.239.195
  • 學位論文

利用二維材料量子點增強半導體量子井的光激螢光

Enhancement of Photoluminescence of Semiconductor Quantum Wells Using Two-Dimensional Material Quantum Dots

指導教授 : 沈志霖
本文將於2024/12/31開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


本論文分別利用微波合成法與雷射燒融法製造我們的樣品,並且成功合 成出摻雜天門冬醯胺的二硫化鎢量子點與石墨烯量子點。我們透過光激螢 光、紫外-可見光吸收、穿透式電子顯微鏡來證明我們所合成的量子點是成 功的。再來利用X 射線光電子能譜確認天門冬醯胺成功的摻雜在二硫化鎢 量子點中。 接著探討高靈敏度二維電子氣之霍爾磁性感測器元件的Si-δ 摻雜的砷 化銦鎵/砷化鋁鎵量子井的拉曼特性,發現拉曼的不對稱性會隨著Si-δ 摻雜 的量越多越不對稱,我們認為因為摻雜的越多缺陷也越多,導致不對稱性越 明顯。 再來利用我們所成長的量子點分別滴在兩個量子井上,發現兩個元件 的光激螢光都有增強的現象,再來利用載子生命期的差異,公式的擬合,分 析出造成光激螢光增強的現象為載流子轉移的因素。

關鍵字

二維材料 量子點 量子井

並列摘要


In this thesis, tungsten disulfide quantum dots (WS2 QDs) and graphene quantum dots (GQDs) each doped with asparagine were successfully fabricated via microwave-assisted synthesis and laser ablation, respectively. The successful synthesis of both QDs were demonstrated by transmission electron microscopy (TEM), photoluminescence (PL) spectra and ultraviolet-visible (UV-Vis) absorption spectra. To confirm the successful doping of aspargine in the QDs, Xray photoelectron spectroscopy (XPS) was used. The Raman scattering properties of Si-δ-doped indium gallium arsenide (InGaAs) and aluminum gallium arsenide (AlGaAs) quantum wells with high sensitivity two-dimensional electron gas Hall magnetic sensor elements are discussed. It is found that the Raman asymmetry depends on Si. With higher amount of delta doping the more asymmetric the Raman spectra shows. We suggest that doping defects on the surface of the quantum well demonstrates pronounced asymmetry. Here, the as-synthesized WS2 QDs and GQDs were used as separate dopants to both quantum wells via drop-casting method. It is found that the photo-excited fluorescence of both quantum wells are enhanced. Recombination kinetics analysis showed that carrier transfer is responsible for the enhancement of PL intensity via QDs doping.

參考文獻


參考文獻
1. X.-M. Chen, G.-H. Wu, Y.-Q. Jiang, Y.-R. Wang and X. Chen. Graphene and
graphene-based nanomaterials: the promising materials for bright future of
electroanalytical chemistry. Analyst, 136, 4631-4640 (2011).
2. Nyangiwe, N.N. (2012). Graphene based nano-coatings: synthesis and

延伸閱讀