透過您的圖書館登入
IP:18.222.190.52
  • 學位論文

剪應變型壓電馬達之研製

Development of a Shear Strain Type Piezoelectric Motor

指導教授 : 丁鏞

摘要


本論文的目標為研製一種d14壓電陶瓷的楔子型壓電馬達。與d15壓電元件相比,一般常使用的d15壓電陶瓷元件為了產生更大的輸出速度與力,必須沿著極化方向以增加其厚度,然而d14壓電陶瓷容易藉由增加元件垂直於接觸面方向的長度來達到增加輸出的目的,並不須透過高電壓的極化與提升驅動電壓的方式,也能因為尺寸上的增加來將低其壓電元件的自然共振頻率。相較於一般常用的PZT-8壓電陶瓷,本論文使用之S-6壓電陶瓷具有較高的機械品質係數外,還具有較大的位移量以適合作為高速型的壓電致動器。本論文除了針對壓電馬達的定子使用ANSYS有限元素模擬軟體進行共振模態、頻率響應和振幅的模擬以及實驗量測外,亦將馬達架設於平台與旋轉軸承上進行馬達輸出功能的驗證。由量測數據得知實驗與模擬兩者的結果相近。此壓電馬達在輸入±150V的電壓下,可分別能產生0.4µm的縱向振幅以及2.0µm的橫向振幅,平台與旋轉軸之最大線性與旋轉速度分別約為150mm/s以及13rpm。

並列摘要


A new wedge-type piezoelectric actuator using ceramics d14 is developed. Compared to d15, for example, increasing the thickness along the polarization direction for the purpose of generating more speed and force output is necessary. However, ceramic d14 can easily achieve the target by increasing the length so that no need of using high voltage for polarization, thus will reduce the required driving voltage. Also, the resonance frequency chosen for driving may not be increased much. Ceramics S-6 with high quality factor greater than that of ceramics PZT-8 is used to design high-speed piezoelectric actuator. Entire surface is fully in contact with the driven rotary bearings and platform or stage. Analytical simulation in ANSYS and experiment are carried out to investigate the resonance frequency and vibration mode shape as well as amplitude. Both results have close approximation. For a single piece of the built sample actuator with ±150V applied voltage, it is able to generate vertical and transverse vibration amplitude of about 0.4µm and 2.0µm respectively. The stator integrated with a linear stage (the carriage) and rotary bearings (rotor) as well as employed with an appropriate signal, the maximum linear and rotation speed is measured about 150mm/sec and 13 rpm respectively.

參考文獻


[3] K. Uchino, “Piezoelectric Ultrasonic Motors: Overview,” Smart Materials and Structures, vol. 7, pp.273-285, 1998.
[5] H. Shinoda, and S. Ando, “Ultrasonic Emission Tactile Sensor for Contact Localization and Characterization,” IEEE International Conference on Robotics and Automation, Vol. 3, pp. 2536-2543, 8-13 May 1994.
[12] M. Kurosawa and S. Ueda, “Hybrid transducer Type Ultrasonic Motor,” IEEE Trans. UFFC, 38-2, pp.89-92, 1991.
[13] A. Manabu, Y. Tomikawa, T. Takano, “Thin Rotary and Linear Ultrasonic Motors Using a Double-mode Piezoelectric Vibrator of The First Longitudinal and Second Bending Mode,” Jpn. J. Appl. Phys. Vol.31, pp.3073-3076, 1992.
[14] A. Manabu, Y. Tomikawa, T. Takano, “Ultrasonic Motors Using Longitudinal and Bending Multimode Vibrators with Mode Coupling by Externally Additional Asymmetry or Internal Nonlinearty,” Jpn. J. Appl. Phys. Vol. 31, pp.3077-3080, 1992.

延伸閱讀