在1974 年,魅夸克首先被兩實驗室發現,一為SLAC,另一為Brookhaven。在1978 年開始由E. Eichten、K. Gottfried等人,利用位能模型去計算魅夸克偶的質量分佈,其位能稱之為康乃爾位能。在1900 以來,計算魅夸克偶的質量分佈建立在微擾性的量子色動力學上,他們假設夸克及反夸克間的距離約為1/200 MeV。而本篇論文應用Pade近似法計算重夸克方法。在S態中魅夸克偶的質量可以利用非相對論性量子色動力學及NLO修正求得其質量的分佈。在本篇論文中,其魅夸克偶的束縛能的哈密爾頓函數為H(β ) ,β為任意常數,在計算終了,β = 1。雖然束縛能並非為微擾量,但是我們求得在β → ∞ 及β → 0 下的兩個極限下的的能量分佈,再導入Pade近似法進一步求得魅夸克偶的質量分佈。我們尋找的極小值及配合合理的物理參數,此四個參數分別為:魅夸 克的質量、魅夸克間的康普頓波長1/μ以及線性位能常數λ。最後我們的的計算結果比較目前的魅夸克偶實驗數據,eta_c, J/phi, eta'_c,phi'最後結果為mc= 1.696 GeV, alpha_s= 0.405,λ = 0.196 GeV^2,μ = 1.186 GeV,chi^2_{nls}=30,就每一個態的比較,僅有eta'_c 約為30 左右其餘皆小於0.05,可證明Pade 近似法是一個相當好計算魅夸克偶及非微擾的束縛態的近似方式。
The S-wave c¯c charmonium spectroscopy has been calculated by considering thefull Hamiltonian in non-relativistic QCD (NRQCD), containing the next-to-leading order(NLO) corrections. The Hamiltonian for the binding energy of the charm and anti-charm pair is represented as ¯H (β) with β = 1. As shown in the paper, although the binding energy cannot be solved perturbatively, however, we find that its good approximation can be obtained by means of determining the Pad´e ratio from two extreme perturbative limits, β →∞ and β → 0. In numerical fit, four relevant physical parameters, the charm quark mass mc, strong coupling constant αs, charmed quark Compton wave lengthen 1/μ, and linear potential constant λ, can thus be determined. Our best fit results for the masses of the S-wave charmonium states are in good agreement with the current data. Some predictions can be further tested in the near future.