透過您的圖書館登入
IP:18.224.0.25
  • 學位論文

含甲咪配位基與一價銅化合物之合成、結構與放光性質探討

Chemistry of Copper(I) Complexes Based on Formamidinate Ligands; Synthesis, Structures and Luminescent Properties

指導教授 : 陳志德
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本篇論文探討利用甲咪配位基合成出的Cu(I)化合物之結構與性質。共分為兩個部分: 第一部分:藉由Hpmf [N,N’-bis(pyrimidyl-2-yl)formamidine]、Hdmpmf [N,N'-bis(4,6-dimethylpyrimidin-2-yl)formamidine]、與Hmmpmf [N,N'-bis(4-methoxy-6-methylpyrimidin-2-yl)formamidine]分別與鹵素銅化合物反應獲得環狀結構Cu(I)化合物[Cu4(pmf)4],1、線型結構化合物{[Cu3(dmpmf)3]·CH2Cl2},2、環狀結構化合物[Cu4(mmpmf)4],3以及利用螢光所預測的化合物4,[Cu4(dmpmf)4]。這些化合物皆已X-ray繞射儀鑑定其結構。所有的化合物皆受到cuprophilicity的影響,即銅離子間的距離不同而擁有不同的放光性質。藉由放射光譜可以得知化合物1、3、4放射波長為533 - 545 nm、激發波長370 nm,而線性的化合物2的放光波長則落在590 nm、激發波長370 nm。利用TD-DFT的計算得知化合物1 - 4的放光機制主要是金屬到配位基3dσ*/δ*→pπ*的電荷轉移。 第二部分:利用水熱反應,加入2-aminopyridine和triethylorthoformate以及氫氧化鈉與鹵素銅在DMF、THF、methanol反應得到由鹵素連接形成的一維金屬延伸鏈狀結構,{[Cu4(Dpyf)2Br2]・DMF}n,5,{[Cu4(Dpyf)2Br2]・THF}n,6,與{[Cu4(Dpyf)2I2]}n,7。化合物5 - 7擁有四個銅離子作為連線單元並且受到closed-shell作用力影響。此外,化合物5可藉由改變溶劑產生可逆的晶體轉換。化合物5及7受到cuprophilicity強烈的影響使得其激發波長為370 nm而放光波長落在549 nm。藉由DFT知道化合物5和7的放光機制為金屬配位機3dσ*/δ*→pπ*的電荷轉移。

並列摘要


This thesis discuss the structures and properties of Cu(I) polynuclear complexes and coordination polymers supported by the formamidinate ligands, which is divided into two parts. Part 1: Reactions of N,N’-bis(pyrimidyl-2-yl)formamidine (Hpmf), N,N'-bis(4,6-dimethylpyrimidin-2-yl)formimidamide (Hdmpmf) and N,N'-bis(4-methoxy-6-methylpyrimidin-2-yl)formimidamide (Hmmpmf) with CuX (X = Cl, Br, and I) afforded cyclic complex [Cu4(pmf)4], 1, linear copper chain {[Cu3(dmpmf)3]·CH2Cl2}, 2, cyclic complex [Cu4(mmpmf)4], 3, and compound 4 in which the structure was estimated by luminescence; complexes 1 - 3 were structurally identified by X-ray crystallography. All of the compounds follow the principle of cuprophilicity, where the distance of copper ions effect the luminescence properties. Therefore, one assumption has been proposed to estimate the structure of Cu(I) complexes that contain formamidinate ligands. The emission spectra of 1, 3, and 4 exhibit broad bands in 533 - 545 nm upon the excitation at 370 nm while the linear metal chain 2 exhibits emission at 590 upon the same excitation wavelength. Time-dependent Density function theory (TD-DFT) calculation suggests that the emissions of 1 - 4 are mainly due to metal to ligand 3dσ*/δ*→pπ*charge transfer. Part 2: One-pot hydrothermal reactions of 2-aminopyridine and triethylorthoformate and sodium hydroxide with CuX (X = Br, and I) in dimethylformamide (DMF), tetrahydrofuran (THF), and methanol (MeOH) afforded 1D extended metal atoms chain, {[Cu4(Dpyf)2Br2]・DMF}n, 5, {[Cu4(Dpyf)2Br2]・THF}n, 6, and {[Cu4(Dpyf)2I2]}n, 7, respectively, which were structurally identified by X-ray crystallography. Complexes 5 - 7 present closed-shell Cu(I)---Cu(I) interactions that are supported by formamidinate ligands. Furthermore, reversible crystal-to-crystal transformation were found in complex 5 upon the solvent exchange. The effect of cuprophilicity strongly influence the emission of compounds 5 and 7 where a board emission at 570 nm upon the excitation at 370 nm was observed for 5, while a broad emission at 549 by the excitation wavelength at 370 nm was observed for 7. Density function theory (DFT) implies that the emissions of 5 and 7 are due to metal to ligand 3dσ*/δ*→pπ*charge transfer.

並列關鍵字

Cuprophilicity Formamidine luminescence

參考文獻


(1) Hao, Y.; Wu, B.; Li, S.; Liu, B.; Jia, C.; Huang, X. and Yang, X. One-dimensional coordinatioin polymers of a flexible bis(pyridylurea) ligand; CrystEngComm, 2011, 13, 6285-6292.
(2) Dong, L.; Chu, W.; Zhu, Q. and Huang, R. Three Novel Homochiral Helical Metal-Organic Frameworks Based On Amino Acid Ligand: Syntheses, Crystal Structures, and Properties; Cryst. Growth Des. 2011, 11, 93-99.
(3) (a) Suh, M. P.; Park, H. J.; Prasad, T.K.; Lim, D.-W. Hydrogen Storage in Metal-Organic Frameworks; Chem. Rev. 2012, 112, 782-835. (b) He,Y.; Zhou, W.; Qian, G.; Chen, B. Methane storage in metal-organic frameworks; Chem. Soc. Rev. 2014, 43, 5657.
(4) Bailar Jr. J. C. Coordination Chemistry; Prep. Inorg. React., 1964, 1, 1.
(5) (a) Batten, S. R.; Neville, S. M.; Turner, D. R. Coordination Polymers : Design, Analysis and Application; Royal Society of Chemistry, Cambridge, 2009. (b) Morsali, A.; Masoomi, M. Y. Structures and properties of mercury(II) coordination polymers; Coord. Chem. Rev. 2009, 253, 1882-1905. (c) Robin, A. Y.; Fromm, K. M. Coordination polymer networks with O- and N-donors: What they are, why and how they are made; Coord. Chem. Rev. 2006, 250, 2127-2157. (d) Carlucci, L.; Ciani, G.; Proserpio, D. M. Polycatenation, polythreading and polyknotting in coordination network chemistry; Coord. Chem. Rev. 2003, 246, 247-289. (e) Thapa, K. B.; Chen, J.-D. Crystal engineering of coordination polymers containing flexible bis-pyridyl-bis-amide ligands; CrystEngComm. 2015, 17, 4611-4626.

延伸閱讀