透過您的圖書館登入
IP:3.135.194.251
  • 學位論文

酸鹼與溫度應答磁性微胞運用為藥物載體之研究

Study of pH- and temperature- responsive magnetic micelles gelatin-g-poly(NIPAAm-co-DMAAm-co-UA)-g-dextran/Fe3O4 as drug carrier

指導教授 : 葛宗融

摘要


酸鹼應答磁性微胞具備pH專一性與磁引導特性,可藉由此兩種特性增加特定環境的藥物釋放,並降低生物組織的副作用。本研究以明膠接枝聚(異丙基丙烯醯胺-二甲基丙烯酰胺-十一烯酸)接枝葡聚醣四氧化三鐵 (gelatin-g-poly(NIPAAm-co-DMAAm-co-UA)-g-dextran/Fe3O4,GPDF),搭載藥物作為藥物載體進行藥物於特定環境釋放之研究。以超導量子干涉磁量儀(superconducting quantum interference device,SQUID)、傅利葉轉換紅外光譜(Fourier transform infrared spectroscopy,FTIR)與核磁共振光譜學(nuclear magnetic resonance spectroscopy,NMR)驗證磁性微胞之接枝與超順磁特性,運用此特性標定微胞,藉由磁性操控微胞移動於特定區域作藥物釋放。微胞於病變組織pH 6.6環境中較正常組織pH 7.2環境能提升近3倍的藥物釋放。本研究顯示GPDF在磁性標靶治療與藥物載體上具有相當的潛力。

並列摘要


pH-responsive magnetic micelles are beneficial for time-controlled and site-specific drug deliver without triggering potential biological side effects. In this study, gelatin-g-poly(NIPAAm-co-DMAAm-co-UA)-g-dextran/Fe3O4 (GPDF) pH-responsive magnetic micelles have been synthesized to carry hydrophilic insulin-promoting factor, nicotinamide. Superconducting quantum interference device (SQUID), Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR) analysis confirmed the grafting and superparamagnetic property of GP micelles. Use the magnetic property, manipulate the GP micelles to specific region for drug delivery. The amount of accumulative nicotinamide release in pH 6.6 was 3-fold higher than that in pH 7.2 suggesting GPDF is beneficial for targeting pathological regions. The present study demonstrated that GPDF is a potential drug carrier for pH and magnetic target therapy.

參考文獻


[1] T. Koyama, M. Shimura, Y. Minemoto, S. Nohara, S. Shibata, Y. Iida, S. Iwashita, M. Hasegawa, T. Kurabayashi, and H. Hamada, “Evaluation of selective tumor detection by clinical magnetic resonance imaging using antibody-conjugated superparamagnetic iron oxide,” Journal of Controlled Release, vol. 159, no. 3, pp. 413-418, 2012.
[2] H. Xu, Z. P. Aguilar, L. Yang, M. Kuang, H. Duan, Y. Xiong, H. Wei, and A. Wang, “Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood,” Biomaterials, vol. 32, no. 36, pp. 9758-9765, 2011.
[3] G. Bisker, D. Yeheskely-Hayon, L. Minai, and D. Yelin, “Controlled release of Rituximab from gold nanoparticles for phototherapy of malignant cells,” Journal of controlled release, vol. 162, no. 2, pp. 303-309, 2012.
[4] G. Unak, F. Ozkaya, E. I. Medine, O. Kozgus, S. Sakarya, R. Bekis, P. Unak, and S. Timur, “Gold nanoparticle probes: design and in vitro applications in cancer cell culture,” Colloids and Surfaces B: Biointerfaces, vol. 90, pp. 217-226, 2012.
[5] H. Hafian, A. Sukhanova, M. Turini, P. Chames, D. Baty, M. Pluot, J. H. Cohen, I. Nabiev, and J.-M. Millot, “Multiphoton imaging of tumor biomarkers with conjugates of single-domain antibodies and quantum dots,” Nanomedicine: Nanotechnology, Biology and Medicine, vol. 10, no. 8, pp. 1701-1709, 2014.

延伸閱讀