透過您的圖書館登入
IP:3.22.249.158
  • 學位論文

化學還原氧化石墨烯之合成與砷離子檢測之應用

Synthesis of Chemical Reduced Graphene Oxide and application of As(III) detection

指導教授 : 張耀仁 何青原
本文將於2025/08/24開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


本研究使用化學共沉澱法製備出奈米級的四氧化三鐵,並以粉狀石墨透過改良的哈莫法,於製程中控制溫度進而得出兩種不同的氧化石墨稀,最後將兩者混合之後使用聯氨的化學還原法,控制還原時間的不同,進而得到4種不同參數的rGO/Fe3O4磁性奈米複合材料。對於材料特性的分析方法,透過X光射線繞射分析、穿透式電子顯微鏡、傅立葉轉換紅外線光譜、拉曼光譜以及震動樣品磁力計,觀察磁性奈米複合材料的結晶狀況、外觀狀況、缺陷狀態、氧化官能團的分布以及磁性的狀況。本研究使用網版印刷電極作為電化學感測器的電極,對4種磁性奈米複合材料進行電化學分析,使用了伏安循環法先找出4種材料中電子傳導速度最優良的,接著再對此材料進行方波伏安法,找出最佳濃縮電位以及最佳濃縮時間後,將待測重金屬預濃縮於網版印刷電極上,接著使用方波伏安法,將重金屬剝除即可得到一感應電流,改變不同的重金屬濃度進而計算出此磁性奈米複合材料對重金屬砷的靈敏度以及最低檢測極限濃度,最後在對本材料進行干擾性分析,使用三種不同的重金屬對原本的重金屬砷進行干擾,進而確認此磁性奈米複合材料對重金屬砷的專一性。

並列摘要


In this study, nanoscale Fe3O4 was prepared by the chemical co-precipitation method, and powdered graphite was used through the modified Hummer’s method to control the temperature during the process to obtain two different graphene oxides. Finally, this two materials after mixing, use the chemical reduction method of hydrazine to control the different of reduction time, and then obtain four kinds of rGO/ Fe3O4 nanocomposites with different parameters. For the analysis methods of material characteristics, observe the crystallization, appearance, and defect status of magnetic nanocomposites through XRD, TEM, FT-IR, Raman and VSM, The distribution of oxidized functional groups and the state of magnetism. In this study, screen-printed electrodes were used as the electrodes of the electrochemical sensor. Four magnetic nanocomposite materials were electrochemically analyzed. The voltammetry cycle method was used to find the best electron conduction rate among the four materials. Then perform square wave voltammetry on this material to find the best concentration potential and the best concentration time, pre-concentrate the heavy metals to be measured on the screen-printed electrodes, and then use the square wave voltammetry to remove the heavy metals. An induced current can be obtained, and different heavy metal concentrations can be changed to calculate the sensitivity of the magnetic nanocomposite to heavy metal arsenic and the lowest detection limit concentration. Finally, the interference analysis of this material is performed, using three different heavy metals to compare the original heavy metal arsenic Perform interference to confirm the specificity of this magnetic nanocomposite for heavy metal arsenic.

並列關鍵字

Fe3O4 rGO electrochemical sensor arsenic

參考文獻


[1] C. Gao, X. Y. Yu, S. Q. Xiong, J. H. Liu, X. J. Huang, “Electrochemical detection of arsenic (III) completely free from noble metal: Fe3O4 microspheres-room temperature ionic liquid composite showing better performance than gold,” Analytical Chemistry, Vol. 85, pp. 2673-2680, 2013.
[2] K. Anezaki, I. Nukatsuka, K. OHZEKI, “Determination of arsenic (III) and total arsenic (III, V) in water samples by resin suspension graphite furnace atomic absorption spectrometry,” Analytical Science, Vol. 15, pp. 829-834, 1999.
[3] N. Zhang, N. Fu, Z. Fang, Y. Feng, L. Ke, “Simultaneous multi-channel hydride generation atomic fluorescence spectrometry determination of arsenic, bismuth, tellurium and selenium in tea leaves,” Food Chemistry, Vol. 124, pp. 1185-1188, 2011.
[4] G. Álvarez-Llamas, M.A. del Rosario Fernández de laCampa, A. Sanz-Medel, “ICP-MS for specific detection in capillary electrophoresis,” TrAC Trends In Analytical Chemistry, Vol. 24, pp. 28-36, 2005.
[5] Y. Arslan, E. Yildirim, M. Gholami, S. Bakirdere, “Lower limits of detection in speciation analysis by coupling high-performance liquid chromatography and chemical-vapor generation,” TrAC Trends In Analytical Chemistry, Vol.30, pp. 569-585, 2011.

延伸閱讀