透過您的圖書館登入
IP:18.191.253.62
  • 學位論文

二價汞和鎘配位高分子的結構轉變:合成,結構和性質

Divalent Mercury and Cadmium Coordination Polymers Exhibiting Structural Transformation: Syntheses, Structures and Properties

指導教授 : 陳志德

摘要


本論文分六部份探討含雙醯胺雙吡啶與羧酸基之二價汞與鎘配位高分子的合成、結構與特性。 第一章:第一章節介紹晶體工程和配位高分子(CPs)。此部分討論了配位高分子的分類與實驗中使用的配位基。此外,還討論單晶結構轉換的過程及其驗證,最後簡要介紹各章節的實驗結果。 第二章:第二章介紹並利用Hirshfeld Surface Analysis定量分析晶體堆疊時維持整個分子的分子間作用力,如氫鍵、每一個原子和原子間的作用力、-作用力、凡得瓦力等等。 第三章:HgX2和2,2’-(1,2-phenylene)-bis(N-pyridin-3-yl)acetamide,1,2-pbpa利用溶劑熱反應,在乙醇中得到[Hg(1,2-pbpa)X2]n (X = Cl, 1; Br, 2; I, 3),它們皆為相同的1D zigzag鏈狀結構。而利用1,2-pbpa的乙醇溶液和HgI2的甲醇及乙腈溶液做合成養晶,可得到1D 螺旋鏈的[Hg(1,2-pbpa)I2MeOH]n,4及[Hg(1,2-pbpa)I2‧MeCN]n,5。含碘化合物3與1和2不同,在於3可以藉由吸附及脫附甲醇及乙腈,和4和5進行可逆的結構轉換,這也表明了N-H---X和Hg---X的作用力在評估結構轉換的重要性。此外,化合物4及5可藉由溶劑交換進行可逆的單晶結構轉換。化合物3 – 5展現出溶劑對HgI2配位高分子的折疊和展開具有顯著效應的獨特實例。 第四章:HgX2利用溶劑熱法,與新的雙醯胺雙吡啶配位基 2,2'-(1,3-phenylene)-bis(N-(pyridin-3-yl)acetamide) (1,3-pbpa)在乙腈的環境下產生新的化合物[Hg(1,3-pbpa)X2]n (X = Cl, 6; Br, 7; I, 8),而化合物[Hg(1,3-pbpa)X2MeCN]n (X = Br, 9; I, 10)則是HgX2和1,3-pbpa利用合成養晶的方式在室溫下合成。化合物6,7和8為相同的1維(1D) helical chains,然而8卻有不同的螺旋周期,分別為18.0、18.3和29.1 Å。化合物7和8可藉由溶劑的吸收和去除,轉換成1D mesohelical chains的化合物9和10,而其螺旋周期為29.1和29.9 Å,而且此為一可逆的反應。吡啶環的旋轉和醯胺基的位向,即為結構拉伸和螢光發生發生改變的原因。7和9的轉換為軟性1D helical chains拉伸的特殊例子。6和7也探討了鹵素陰離子在結構轉換和螢光特性中扮演的角色。 第五章:用兩種不同的N-donor配位基2,2'-(1,4-phenylene)bis(N-(pyridin-3-yl)acetamide) (1,4-pbpa)和N1,N4-di(pyridin-3-yl) naphthalene-1,4-dicarboxamide (dpndc),合成7個一維(1D)鹵素汞的化合物。當[Hg(1,4-pbpa)Cl2‧CH3OH]n,11,形成sinusoidal chain時,化合物[Hg(1,3-pbpa)X2]n (X = Cl, 12; Br, 13; I, 14)和[Hg(dpndc)X2]n (X = Cl, 15; Br, 16; I, 17)是helical。通過熱的作用,sinusoidal chain 11經由不可逆的結構轉變成helical chain 12,並伴隨著光致發光的變化。該化合物也在室溫下發現其固態有光致發光的性質。 第六章:利用溶劑熱法,將Cd(CH3COO)2和2,2’-(1,3-phenylene)-bis(N-pyridin-3-yl)acetamide, (1,3-pbpa)與1,3-phenylenediacetic acid (1,3-H2PDA),4,4’-oxybis(benzoic acid) (4,4’-H2OBA)和1,4-benzenedicarboxylic acid (1,4-H2BDC)得到二維化合物[Cd(1,3-pbpa)(1,3-PDA)]n,18, [Cd(1,3-pbpa)(OBA)‧2H2O]n,19 和 [Cd(1,3-pbpa)(1,4-BDC)(H2O)‧EtOH‧H2O]n,20。結構研究表明,18是一個罕見的2,4L2拓撲結構,點符號為{84.122}{8}2,19是sql,20是點符號為{12}{4.125}{4}新的拓撲結構,可以再簡化為hcb拓撲。去溶劑19的相較於N2,CO2的吸附效果較佳,且19的H2與CO2吸附能力比18高。並探討18-20的TGA及固態螢光性質。

並列摘要


In this dissertation, the syntheses, structures and properties of divalent mercury and cadmium coordination polymers with bis-pyridyl-bis-amide and carboxylate ligands have been discussed and summarized in six chapters as follows. Chapter 1. Chapter 1 introduces the crystal engineering and coordination polymers (CPs). Here, classification of CPs, ligands used during the research are also discussed. Moreover, single-crystal-to-single-crystal transformation process and its verification have been discussed and finally the researches reported in each chapter have been described briefly. Chapter 2. Chapter 2 introduces the Hirshfeld surface analysis which explores the intermolecular interaction in a crystal packing by quantitative analysis of hydrogen bonding, interatomic interaction among each and every individual atom, - interactions, van der Waals forces of attraction etc., which maintain whole-of-molecule approach. In this chapter basic introduction and calculation have been introduced which are used during our research work. Chapter 3. Solvothermal reactions of HgX2 with 2,2’-(1,2-phenylene)-bis(N-pyridin-3-yl)acetamide, 1,2-pbpa, in ethanol afforded [Hg(1,2-pbpa)X2]n (X = Cl, 1; Br, 2; I, 3), which are isostructural 1D zigzag chains, while layering reactions of a ethanolic solution of 1,2-pbpa with a methanolic solution and an acetonitrile solution of HgI2, respectively, gave 1D helical chains [Hg(1,2-pbpa)I2MeOH]n, 4, and [Hg(1,2-pbpa)I2MeCN]n, 5. In marked contrast to 1 and 2, the iodide-containing 3 is able to exhibit reversible structural transformation with 4 and 5 by adsorption and desorption of methanol and acetonitrile, suggesting the importance of N-H---X and Hg---X interactions in the evaluation of structural transformation. Moreover, complexes 4 and 5 exhibit reversible crystal to crystal transformation triggered by solvent exchange. Complexes 3 - 5 represent a unique example that the solvents show significant effect on folding and unfolding of the HgI2 single-stranded helical coordination polymers. Chapter 4. Solvothermal reactions of HgX2 salts with the new bis-pyridyl-bis-amide ligand 2,2'-(1,3-phenylene)-bis(N-(pyridin-3-yl)acetamide) (1,3-pbpa), in acetonitrile afforded the complexes [Hg(1,3-pbpa)X2]n (X = Cl, 6; Br, 7; I, 8), while the complexes [Hg(1,3-pbpa)X2MeCN]n (X = Br, 9; I, 10) were obtained by layering solutions of HgX2 and 1,3-pbpa at room temperature. Complexes 6 and 7 are isostructural one-dimensional (1D) helical chains different from 1D helical chain 8 in the spans, which are 18.0, 18.3 and 29.1 Å, respectively. Complexes 7 and 8 undergo reversible structural transformation upon solvent adoption and removal with the 1D mesohelical chains 9 and 10 holding spans of 29.1 and 29.9 Å, respectively. Pyridyl ring rotation and amide group reorientation are proposed for the structural transformation accompanied with simultaneously change in luminiscence. Structural transformation in 7 and 9 represents the unique example of elastic 1D helical chains that show stretching during the process. The roles of halide anion on the structural changes and the luminescent properties of 6 - 7 are also discussed. Chapter 5. Seven one-dimensional (1D) mercury(II) halide coordination polymers have been synthesized with two different N-donor ligands, 2,2'-(1,4-phenylene)bis(N-(pyridin-3-yl)acetamide) (1,4-pbpa) and N1,N4-di(pyridin-3-yl) naphthalene-1,4-dicarboxamide (dpndc). While [Hg(1,4-pbpa)Cl2‧CH3OH]n, 11, forms a sinusoidal chain, the complexes [Hg(1,3-pbpa)X2]n (X = Cl, 12; Br, 13; I, 14) and [Hg(dpndc)X2]n (X = Cl, 15; Br, 16; I, 17) are helical. The sinusoidal 11 undergoes irreversible structural transformation into helical 12 by the action of heat, with change in photoluminescence. The photoluminescence properties of the complexes were also investigated in solid state at room temperature. Chapter 6. Solvothermal reactions of Cd(CH3COO)2 and 2,2’-(1,3-phenylene)-bis(N-pyridin-3-yl)acetamide, (1,3-pbpa), with 1,3-phenylenediacetic acid (1,3-H2PDA), 4,4’-oxybis(benzoic acid) (4,4’-H2OBA) and 1,4-benzenedicarboxylic acid (1,4-H2BDC) gave two-dimensional complexes [Cd(1,3-pbpa)(1,3-PDA)]n 18, [Cd(1,3-pbpa)(OBA)‧2H2O]n 19 and [Cd(1,3-pbpa)(1,4-BDC)(H2O)‧EtOH‧H2O]n, 20. Structural study revealed that 18 has a rare 2,4L2 topology with a point symbol {84.122}{8}2, 19 has sql and 20 has new topology with a point symbol {12}{4.125}{4}, which can be simplified into hcb topology. Desolvated product of 19 showed moderate uptake of CO2 and good selectivity over N2 and also exhibited better H2 and CO2 sorption compared to the activated product of 18. Thermal gravimetric analysis (TGA) and the solid state luminescence properties of 18 - 20 have been also investigated.

參考文獻


1.2 References
1 R. Pepinsky, Phys. Rev., 100, 971, 1955. Cf. also American Association for the Advancement of Science, Abstracts (Atlanta, Ga., December 27, 1955), Sec. C.
2 G. M. Schmidt, J. Pure Appl. Chem., 1971, 27, 647.
3 G. R. Desiraju, Crystal Engineering: The design of Organic Solids, Elsevier, 1989, Amsterdam.
4 Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005, International Union of Pure and Applied Chemistry, ed. Connelly, N. G.; Damhus, T.; Hartshorn, R. M.; Hutton, A. T. The Royal Society of Chemistry, Cambridge, 2005.

延伸閱讀