透過您的圖書館登入
IP:3.14.8.206
  • 學位論文

利用分子模擬計算聚環氧丙烷嵌段聚磺基甜菜鹼甲基丙烯酸酯與聚偏二氟乙烯薄膜和水介面能

The interface energy of poly(propylene oxide-block-polysulfobetaine methacrylate) to PVDF films and water by molecular simulation

指導教授 : 陳昱劭 林子仁
本文將於2028/01/10開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


由於疏水性薄膜聚偏二氟乙烯(Polyvinlidene Fluoride,PVDF)本身具有良好的物理化學性質。近年來許多人研究出不同方法對其進行改質,將PVDF薄膜改為親水性質,以利於過濾物質。其中有研究以物理性塗佈的方式,將不同比例的聚環氧丙烷嵌段聚磺基甜菜鹼甲基丙烯酸酯(PPO-b-PSBMA)兩性離子共聚高分子,以疏水作用力吸附於PVDF薄膜上,並應用於生醫領域中。 此次研究中,針對文獻中提及親水端鏈段的增加不見得水合能力會比較好以及未提及的薄膜介面作用力來進行分析,利用分子動力學(MD)分別對PPO20-b-PSBMA10和PPO20-b-PSBMA20進行模擬計算。並分別對兩種兩性高分子建構PVDF/PPO20-b-PSBMA10/空氣介面模型、PVDF/PPO20-b-PSBMA20/空氣介面模型、PVDF/PPO20-b-PSBMA10/水/空氣介面模型與PPO20-b-PSBMA20/水/空氣介面模型,經MD模擬計算後,分別分析薄膜與兩性離子共聚高分子的介面作用力以及共聚高分子的水合能力。 根據研究結果發現,PPO-b-PSBMA兩性離子共聚高分子不同的親水鏈段比例對PVDF薄膜間的介面作用力和水的介面存在著影響。兩性離子共聚高分子與薄膜的介面強度是PPO20-b-PSBMA20大於PPO20-b-PSBMA10。故顯示出此高分子在提升親水鏈段時,會影響到薄膜的介面強度,其原因是親水鏈段的增加會導致龐大的親水鏈端PSBMA彼此會產生斥力,而對PVDF薄膜產生作用力。水合能力是PPO20-b-PSBMA10大於PPO20-b-PSBMA20,其原因為隨著親水鏈段的增加,PSBMA彼此會產生斥力,導致PSBMA排列不整齊,水合能力下降。故並非僅調高親水性鏈段就能增加水合能力。此項實驗有助於分析不同比例的PPO-b-PSBMA兩性離子共聚高分子,與PVDF薄膜和水之間的介面作用力。

關鍵字

分子動力學

並列摘要


The Polyvinylidene Fluoride (PVDF) film has good physical and chemical properties. Many people have recently researched different methods to modify its quality. One of them is the physical coating of different proportions of poly(propylene oxide-block-polysulfobetaine methacrylate) (PPO-b-PSBMA) zwitterionic polymers onto PVDF films by hydrophobic force for biomedical applications. In this research, we analyzed the interfacial forces of the films which were not mentioned in the above experimental results and calculated PPO20-b-PSBMA10 and PPO20-b-PSBMA20 of molecular dynamics (MD) simulation in the Forcite module. We constructed PVDF/PPO20-b-PSBMA10/Air model, PVDF/PPO20-b-PSBMA20/Air model PVDF/PPO20-b-PSBMA10/Water/Air model, and PVDF/PPO20-b-PSBMA20/Water/Air model, and analyzed the interfacial forces between the films and the zwitterionic polymers and the hydration ability of the zwitterionic polymers by MD simulations, respectively. According to the results, it was found that the different ratios of a hydrophilic segment of PPO-b-PSBMA zwitterionic polymers had an effect on the interfacial forces and water interface between PVDF films. The interface energy between the zwitterionic polymer and the film is PPO20-b-PSBMA20 greater than PPO20-b-PSBMA10. Therefore, it shows that this polymer affects the interfacial energy of the film when the hydrophilic segment is elevated. The reason is that the increase in hydrophilic chain segments causes the large hydrophilic chain ends of PSBMA to repel each other and exert a force on the PVDF film. The hydration capacity is PPO20-b-PSBMA10 greater than PPO20-b-PSBMA20. The reason is that as the hydrophilic chain segments increase, the PSBMAs will repel each other, resulting in the irregular arrangement of PSBMA and the decrease of hydration capacity. Therefore, it is not possible to increase the hydration capacity by merely increasing the hydrophilic chain segments. This experiment helps to analyze the interfacial forces with different ratios of PPO-b-PSBMA zwitterionic polymers between PVDF films or water.

並列關鍵字

Molecular Dynamic

參考文獻


參考文獻
1.Chang, Y., et al., Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir, 2006. 22(5): p. 2222-2226.
2.Venault, A., et al., Surface self-assembled zwitterionization of poly(vinylidene fluoride) microfiltration membranes via hydrophobic-driven coating for improved blood compatibility. Journal of Membrane Science, 2014. 454: p. 253-263.
3.Prasad, K., et al., Metallic Biomaterials: Current Challenges and Opportunities. Materials, 2017. 10(8): p. 884.
4.Hatfield, W., Rustless steels as applied to automobiles and aircraft. Proceedings of the Institution of Automobile Engineers, 1931. 25(2): p. 285-304.

延伸閱讀