透過您的圖書館登入
IP:18.226.93.207
  • 學位論文

可生物降解的電活性聚合物和椰殼廢料活性碳複合材料的製備、鑑定及其在電子感測元件中 的潛在應用

Preparation, Characterization of Biodegradable-Electroactive Polymer Composites with Activated Carbon Derived from Coconut Shell Waste and Their Potential Applications in Electronics Sensing Devices

指導教授 : 陳欣聰 葉瑞銘
本文將於2027/09/15開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


本論文的目的是製備一種可生物降解的電活性聚合物(bio-degradable electroactive polymer,BEP)及其與椰殼衍生的活性複合材料,可用於氣體感測和電化學感測等傳感應用。 首先,製備由兩部分組成的聚合物(聚氨酯-脲)(polyurethane urea,PUU)。 較軟鏈段的部分是稱為聚己內酯二醇(PCL-二醇)的可生物降解分子,而硬鏈段部分是電活性單體“胺封端苯胺三聚體”(amine-capped aniline trimer,ACAT)。 PUU通過聚己內酯二醇、亞甲基二苯基二異氰酸酯(MPDI)和胺封端的苯胺三聚體(ACAT)的共聚製備。 活性碳 (activated carbon,AC) 是通過碳化和活化兩步過程從椰子殼廢料中提取的。 通過簡單的物理混合方法製備複合材料,分別標記為PUU-AC1和PUU-AC3。 對其形態、結構和感測特性進行了研究。PUU-AC0、PUU-AC1 和 PUU-AC3 用於製造氣體感測元件,以檢測在室溫下操作的 1-50 ppm 範圍內的硫化氫 (H2S) 濃度。 當 H2S 氣體濃度低至 1 ppm 時,傳感器顯示出良好的響應靈敏度和快速的響應時間。 它們還顯示出對 H2S 具有非常高的選擇性,但對 SO2、NO2、NH3、CO 和 CO2 等其他氣體的反應很小。 感測元件檢測 H2S 的工作原理是從未摻雜狀態到摻雜狀態的轉變。在電化學感測應用中,使用經PUU-AC0、PUU-AC1和PUU-AC3修飾的碳糊電極(CPE)構建感測元件,用於檢測抗壞血酸(AA)。 詳細研究了液體感測特性,如電活性、動力學研究、電流響應。 循環伏安法研究表明 PUU-AC 複合材料的電化學性能得到改善,證明了 AC 和 PUU 之間發生了有效的電子/電荷轉移。 添加的AA濃度與得到的峰值電流變化呈線性關係。 此外,PUU-AC 感測元件器的電流響應對 AA 濃度的校準曲線也是線性的。 在 S/N(信噪比)為 3 時,PUU-AC0、PUU-AC1 和 PUU-AC3 AA 感測元件的靈敏度分別為 62.6、239 和 407 µA.cm-2/mM。

並列摘要


The purpose of this dissertation was to made a biodegradable-electroactive polymer (BEP) and its composite with activated carbon derived from coconut shell which can be used in sensing application i.e. gas sensing and electrochemical sensing. First of all, polymer (polyurethane-urea) PUU was prepared which consist of two parts. The softer part is a biodegradable molecule named as polycaprolactone-diol (PCL-diol) while the hard segment is an electroactive monomer ‘amine capped aniline trimer’ (ACAT). The PUU was prepared by copolymerization of PCL-diol, methylene diphenyl diisocyante (MPDI) and ACAT. Activated carbon (AC) was derived from coconut shell waste via a two-step process of carbonization and activation. A simple physical mixing method was used to prepare composites and labelled as PUU-AC1 and PUU-AC3 respectively. Their morphology, structure, electrical, thermal and gas sensing properties were studied at room temperature. Thus three samples i.e. PUU-AC0, PUU-AC1 and PUU-AC3 were used to make H2S gas (1-50 ppm) sensors. All the sensors showed a good response sensitivity with quick response time when tested with H2S gas concentration as low as 1 ppm. They also displayed a remarkably high selectivity to H2S but only minor responses to other gases such as SO2, NO2, NH3, CO and CO2. The working principle of the as synthesized sensors to detect H2S was the transition from undoped to doped states. In the electrochemical sensing application, sensor was constructed by using Carbon paste electrode (CPE) modified with PUU-AC0, PUU-AC1 and PUU-AC3 for the sensing of ascorbic acid (AA). The liquid sensing properties like electro-activity, kinetic study, amperometric response were studied in detail. The electrochemical performance of PUU-AC composites improved as indicated by cyclic voltammetry indicating the efficient electron/charge transfer between AC and PUU. A linear relationship observed between the AA concentration and peak current values. Additionally, PUU-AC composites also showed a linear relationship in amperometric response versus the AA concentration. The sensitivity of the PUU-AC0, PUU-AC1 and PUU-AC3 AA sensors were 62.6, 239 and 407 µA.cm-2/mM at a S/N (signal to noise ratio) of 3 respectively.

參考文獻


References:
[1] E. Ventura Spagnolo, G. Romano, P. Zuccarello, A. Laudani, C. Mondello, A. Argo, S. Zerbo, N. Barbera, Toxicological investigations in a fatal and non-fatal accident due to hydrogen sulphide (H2S) poisoning, Forensic Science International. 300 (2019) e4–e8. https://doi.org/10.1016/j.forsciint.2019.04.026.
[2] Z. Jianwen, L. Da, F. Wenxing, Analysis of Chemical Disasters Caused by Release of Hydrogen Sulfide-bearing Natural Gas, Procedia Engineering. 26 (2011) 1878–1890. https://doi.org/10.1016/j.proeng.2011.11.2380.
[3] M. Ago, K. Ago, M. Ogata, Two fatalities by hydrogen sulfide poisoning: Variation of pathological and toxicological findings, Legal Medicine. 10 (2008) 148–152. https://doi.org/10.1016/j.legalmed.2007.11.005.
[4] R.G. Hendrickson, A. Chang, R.J. Hamilton, Co-worker fatalities from hydrogen sulfide, American Journal of Industrial Medicine. 45 (2004) 346–350. https://doi.org/10.1002/ajim.10355.

延伸閱讀