透過您的圖書館登入
IP:18.218.184.214
  • 學位論文

以液相磊晶法在砷化鎵基板上進行橫向磊晶之研究

The Study of Epitaxial Lateral Overgrowth of GaAs by LPE

指導教授 : 溫武義

摘要


在本研究中,我們使用鉍(Bi)作為溶液,以液相磊晶法進行砷化鎵(GaAs)同質磊晶之探討[1]。除了建立同質磊晶最佳成長條件外,並嘗試改變成長過飽和度、時間和降溫速率,以及利用選擇性成長之技術[2, 3, 4],企圖在( 1 0 0 )的砷化鎵基板上進行同質橫向磊晶成長,以降低磊晶層的缺陷密度,加上液相磊晶法接近熱平衡成長的優點,得到高品質的磊晶層。 我們在使用鉍作為成長溶液、並於低過飽和約1℃及低降溫速率約0.1℃/min之成長條件下,在不同的開窗形狀成長之砷化鎵同質磊晶層,經由表面結構的分析後,發現特定的開窗形狀和方向具有橫向成長之現象。針對磊晶層表面結構使用Normarski微分干涉顯微鏡進行觀察分析,發現在每隔15度的輻射狀開窗區有明顯的橫向磊晶成長,並且在離中心點越遠的地方,其橫向成長的寬度有明顯變大的趨勢,這是不同開窗區域其不同的相對過飽合所造成,但在< 0 1 0 > 和< 0 0 1 >的線窗方向上並沒有明顯的橫向磊晶成長。

並列摘要


In this study, we used bismuth (Bi) as a solvent to grow GaAs homoepilayer by liquid phase epitaxy (LPE). In addition to investigating the optimum condition for homoepitaxy from Bi solution, we also try to change super-saturated, time, and cooling rate of growth. It was carried out homoepitaxial lateral overgrowth on ( 1 0 0 ) GaAs substrate with LPE high selective growth capability to reduce the defect density of the epilayer. And it is closed to thermal equilibrium liquid-phase epitaxial growth of the advantages to get high-quality epilayers. Our growth in the use of bismuth as a solution, and in the low super-saturated about 1 ℃ and low cooling rate about 0.1 ℃/min of the growth conditions, it was growth of gallium arsenide homoepilayer in different window shapes, through the surface structure of the analysis, found that the shape and direction of a particular window with the lateral growth of the phenomenon. It was observed and analysed the epilayer surface structure by Normarski differential interference microscope, found that was marked epitaxial lateral overgrowth every 15-degree radial window areas, and in areas farther away from the center of its lateral growth of width larger trend significantly, which is different relative super-saturated in different window areas, but it was no clear direction of the epitaxial lateral growth in < 0 1 0 > and < 0 0 1 > line of windows.

並列關鍵字

LPE GaAs selective growth

參考文獻


[1] S. Naritsuka, Y. Tejima, K. Fujie, T. Maruyama, J. Crystal Growth 310, 2008, p. 1642
[2] Y. Suzuki, T. Nishinaga, Jpn. J. Appl. Phys., Vol.28, 1989, p. 440
[3] Z. Hongzhi, H. Lizhong, T. Yichun, J. Crystal Growth 295, 2006, p. 16
[4] Z. Hongzhi, H. Lizhong, T. Yichun, J. Crystal Growth 307, 2007, p. 294
[12] S. Ishida, Y. Arakawa and K. Wada, Appl. Phys. Lett. Vol. 72, 1998, p. 800.

延伸閱讀