中文摘要 在本論文中,我們提出了一種面具檢測的人臉檢測系統應用於ATM上,來防止非法盜用提款卡的情形,主要的目的是解決罪犯在盜用ATM時候,刻意遮擋容貌,導致監視器無法拍攝到臉部清楚容貌。 首先,我們使用視訊鏡頭來捕捉即時影像和使用訓練好的人臉分類器來找出人臉位置,第二,將臉部位置影像圖擷取下來轉換成灰階,再將灰階影像分別模糊化和銳利化找出邊界和五官位置,檢測結合後的影像,最後我們透過閾值判定來準確的區分臉部是否穿戴面具。 在這篇論中,我們研究結果貢獻如下: 1.降低誤判:在臉部中檢測時,當人臉只露出眼睛、嘴巴和鼻子情況下會通過檢測的誤判,而面具檢測可以解決這誤判。 2.增加個人財產安全性:這套系統確保了每位使用者有清楚的臉孔後,才可使用,當盜用提款卡情況出現時,也會被清楚的拍攝到。
Abstract In this thesis, we propose a face detection scheme with mask detection to prevent fraudulent use of ATM cards to increase safety for application of ATM. The purpose of our scheme is to solve the following problem. In ATM application, criminal's face information can't be recorded, because they usually use someone's ATM card and deliberately cover their face. First, we open webcam to capture a live video and detect the user's face portion by training cascading classifier for human face with Viola-Jones algorithm. Second, the user's face image is transformed grayscale from RGB space. The grayscales image are blurred and sharpened to get images of face edge and facial features. These images are combined to detect if it is a mask image. Finally, we judge the threshold to accurately distinguish whether the face wearing a mask. In this thesis, the results of our research are as follows: 1. Reduce misjudgment : The mask detection solves the misjudgment of face detection. 2. Increase security of personal property : The detection system prevent lost cards from being used by others.