透過您的圖書館登入
IP:216.73.216.122
  • 學位論文

利用化學浴沉積法於合成n-Cu2O:Cl薄膜之特性研究

Preparation and characterization of chlorine-doped n-type cuprous oxide films by chemical bath deposition

指導教授 : 籃山明

摘要


摘要 氧化亞銅(Cu2O)具有直接能隙,能隙為2.1eV,在可見光區吸收係數大,穿透率低等特性,將其應用在太陽能電池研製上,可期望以低價位開發新型太陽能電池。合成Cu2O半導體薄膜所用的材料取得容易,銅金屬在地殼中的含量相當豐富,有著低價位、簡單、無毒的製程等優點,很合乎環保的需求。然而現今欲廣泛應用Cu2O 於太陽能電池研製的困難乃在於N型Cu2O薄膜無法取得。 本研究利用純銅片作為基板,以化學浴沉積 (Chemical Bath Deposition, CBD) 法分別於未摻雜與摻雜氯的情況下製備Cu2O薄膜。未摻雜時使用硫酸銅(CuSO4)水溶液做為成長溶液;摻雜氯時則使用氯化鈉(NaCl)與CuSO4的混和水溶液作為成長溶液,其中NaCl為摻雜源。實驗中特別改變水溶液中NaCl相對於CuSO4之莫爾濃度比(CuSO4/NaCl)以期調變控制Cu2O 薄膜中不同程度的摻雜濃度。 研究結果發現,X光繞射(XRD)分析光譜中只出現來自Cu2O晶面的繞射角度,且於成長溶液之CuSO4/NaCl = 1:0至1:3.0的條件下皆可由熱探針(hot point probe)量测證明所產生的Cu2O薄膜均為N型導電性,未摻雜Cu2O的電阻率為70Ω-cm,但當期莫爾比為1.428時,可製備出電阻率大約為48Ω-cm的N型Cu2O薄膜。低溫5K下所量測的光激螢光(PL)光譜中顯示出分別與氧空缺及氯摻雜有關的兩個發光尖峰於1.72eV及1.89eV,而並未發現與銅空缺(波長為905nm)有關的發光,推斷其原因是CBD合成N型Cu2O:Cl薄膜的溫度只在100oC左右,而使銅空缺不易形成,因銅空缺是形成P型導電性的機制。因此推斷使用銅基板可抑制銅空缺之發生,而以氯原子取代氧原子後則發揮N型雜質角色,進一步提供載子來改善電阻率。

並列摘要


Abstract Chlorine (Cl)-doped cuprous oxide (Cu2O:Cl) thin films were fabricated on copper (Cu) substrate by chemical bath deposition (CBD) method. The Cu2O:Cl films were prepared using copper sulfate (CuSO4) solution with the addition of copper chloride (NaCl) as Cl- source. The molar ratio of NaCl to CuSO4 ([NaCl]/[CuSO4]) was varied from 0 to 2.60. Resultantly, hot point probe measurements demonstrated n-type conductivity for all the Cu2O films produced by CBD. X-ray diffraction patterns show that the as-grown Cu2O:Cl films have a sphalerite structure with a dominant plane orientation of Cu2O(111). Moreover, low temperature photoluminescence (PL) measurements conducted at 5 K demonstrated an emission band at 1.89 eV related to Cl doping besides that at 1.72 eV attributed to doubly ionized oxygen vacancies. It was found that the Cl-related PL emission was intensified with increasing the amount of Cl involved. But X-ray photoelectron spectroscopy not confirmed the incorporation of Cl into the lattice of Cu2O. Conclusively, n-type Cu2O:Cl films with the resistivity ranging from 40 – 50 -cm can be produced on Cu substrate by CBD method. Especially, the lowest resistence of the film is about 48Ω-cm under the ([NaCl]/[CuSO4]) ratio equal to1.428. The doped part, chlorine can be successfully incorporation into cuprous oxide, and replace the oxygen atom to the N-type electrically.

參考文獻


[3] P. B. Ahirrao1, S. R. Gosavi, D. R. Patil, M. S. Shinde and R. S. Patil,Archives of Applied Science Research, 2011, 3 (2):288-291.
[6] Gupta R K, Ghosh K and Kahol P K, Physica E 41 876 (2009).
[8] Tadatsugu Minami, Yuki Nishi, and Toshihiro Miyata,Appl. Phys. Express 6 (2013) 044101
A. P.; Dharmadasa, I. M. Sol. Energy Mater. Sol. C., 61 (2000) 277–286.
[11] Garuthara, R.; Siripala, W. J. Lumin., 121 (2006) 173–178.

被引用紀錄


鄭勝鴻(2015)。以化學浴沉積法成長氧化亞銅摻雜鎳之回火特性研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/CYCU.2015.00422

延伸閱讀