透過您的圖書館登入
IP:3.19.31.73
  • 學位論文

層狀複金屬氫氧化物吸附去除有機蒸氣之研究

The application of layered double hydroxides for the adsorptive removal of organic vapors

指導教授 : 李中光 趙煥平

摘要


本研究主要是在探討熱處理對層狀複金屬氫氧化物對有機蒸氣吸附性質之影響。研究首先經由水熱合成法在反應溫度150 oC及反應時間24小時下合成層狀複金屬氫氧化物,接著在300-700 oC進行煅燒處理。針對上述合成步驟所得之層狀複金屬氫氧化物,分別使用SEM、XRD、氮吸脫附曲線、水蒸氣吸附曲線及 FTIR分別鑑定或分析樣品之表面型態、微結構、孔洞結構(表面積、孔隙體積及孔洞大小分佈)、表面極性及表面官能基隨煅燒溫度之變化情形。接著分別量測四種蒸發熱相近但極性及分子立體形狀具差異性之有機蒸汽:正己烷、甲苯、丁酮及環己烷在20及30 oC之吸附平衡曲線,並探討有機蒸氣之吸附機制。經由 XRD圖譜可知,煅燒處理會破壞LDHs之層狀結構,隨著煅燒溫度之增加,其晶相結構慢慢轉變為MgO之結構。由分析氮吸附曲線可知,煅燒處理會使得LDHs之孔隙體積及孔洞大小變小,而比表面積則可能變大或變小。綜合來說,煅燒處理雖然對LDHs之晶相結構有劇烈之影響,但對其微孔洞結構似乎影響不大。經由計算SHI指標可知熱處理過程會導致LDHs表面之疏水性變大。經由FTIR圖譜可知,煅燒溫度的升高,將使得樣品層間的二氧化碳和水分子大量失去,造成670-1380 cm-1處的 吸收峰強度隨煅燒溫度的升高而降低,進而造成層狀結構的崩解。經由吸附實驗結果可發現不管吸附質是否為極性分子,雖然母體不具有最高之比表面積及孔隙體積,但因其具有較高之親水性,因此在所有LDHs吸附劑中仍具有最高之吸附量。另外,有機蒸氣在LDHs母體上之吸附量依下列順序遞減:甲苯 >丁酮 > 正己烷 > 環己烷,指出LDHs之極性才是決定吸附量大小之關鍵,因此具極性之分子,如甲苯及丁酮,將具有較高之吸附量。最後,有機蒸氣在LDHs上之吸附量隨溫度之增加而減少,意謂吸附過程為一放熱程序。

並列摘要


The objects of this research are to examine the effects of thermal treatment on the adsorption of organic vapors on layered double hydroxides (LDHs). LDHs are prepared via a hydrothermal method at 150 oC for 24 h, and subsequently thermal treatment at 300 to 700 oC. Effects of thermal treatment process on the microstructures and surface chemical characteristics of LDHs are characterized with SEM, XRD, nitrogen adsorption-desorption isotherms, water vapor adsorption isotherms, and FTIR. For the adsorption experiments, gravimetric techniques are employed to determine the adsorption capacities of LDHs for four organic vapors with similar heats of vaporization (i.e. comparable heats of adsorption) but varying dipole moments and structures, including n-hexane, toluene, ketone, and cyclohexane, at isothermal conditions of 20 and 30 oC. Effects of the alteration of both microstructures and surface chemical characteristics of LDHs, induced by thermal treatment, on the organic vapor adsorption are discussed.

參考文獻


9. Ogawa*, M., and Asai,S., Hydrothermal synthesis of layered double hydroxide–deoxycholate intercalation compounds. Chem. Mater, 2000. 12: p. 3253-3255.
15. Marchi, A., Apesteguia,C., Applied Clay Science, 1998. 13: p. 35-48.
21. Das, J., et al., Applied Clay Science, 2006. 32(3-4): p. 252-260.
23. Lemus, J., et al. Chemical Engineering Journal, 2012. 211-212, 246-254 DOI: 10.1016/j.cej.2012.09.021.
28. Shih, Y. and M. Li, J Hazard Mater, 2008. 154(1-3): p. 21-8.

延伸閱讀