透過您的圖書館登入
IP:3.142.196.27
  • 學位論文

聚亞醯胺複合多孔膜材之合成、鑑定與物性研究及其在高頻低介電材料上的潛力應用

Synthesis, characterization and physical property studies of polyimide composite porous membranes and their potential application in high-frequency low dielectric materials.

指導教授 : 葉瑞銘

摘要


本研究論文的主要目的為導入有機及無機的中空型或孔隙型填料來降低聚亞醯胺的介電常數及介電損失,以因應5G世代材料的需求,論文共分為兩大部分: 第一部份利用與溶膠-凝膠法合成胺基改質無機二氧化矽 (AMS)粒子後,再利用二酸酐單體氧聯雙鄰苯二甲酸酐 (4,4'-Oxydiphthalic dianhydride, ODPA)與三官能基胺基交聯劑T403合成聚亞醯胺核殼結構,並利用氫氟酸移除AMS粒子後合成聚亞醯胺中空球。 碳固態核磁共振 (13C-SSNMR)、矽固態核磁共振 (29Si-SSNMR)、傅立葉轉換紅外光譜(FT-IR) 鑑定胺基修飾中孔洞二氧化矽胺基改質二氧化矽 (Amino modify silica, AMS)聚醯胺酸中空球 (Polyamic acid hollow sphere, PAAHS)聚亞醯胺中空球 (Polyimide hollow sphere, PIHS) 之結構鑑定,並以掃描式電子顯微鏡 (SEM)、穿透式電子顯微鏡 (TEM)確認PIHS、PAAHS中空球材料成功合成。 隨後將 PIHS、PAAHS中空球材料與二胺單體ODA及二酸酐單體BPADA合成聚亞醯胺。 利用SEM 拍攝聚醯胺酸/聚亞醯胺中空球複合薄膜之截面圖,確認中空球材料分散於聚亞醯胺薄膜內。 紫外光-可見光光譜 (UV-Visible) 實驗量測薄膜透光性。 利用介電特性與熱傳導係數實驗,確認由於有機中空球導入聚亞醯胺薄膜 (即空氣的導使得聚亞醯胺薄膜之高低頻介電常數與熱導係數都隨之降低。 第二部分本章節利用溶膠-凝膠法與非界面活性模板法合成無孔洞 (ARS)與具有中孔洞 (AMS)的無機二氧化矽材料,並利用APTES (R-NH2)、MTMS (R-CH¬3)、VTMS (R-C=C) 三種矽前驅物,一步驟合成一系列之二氧化矽粉體。 二氧化矽合成完成後再與BPDA與ODA合成一系列之聚亞醯胺材料。 得到合成好之疏水性二氧化矽介孔粉體,首先利用FTIR、13C- SSNMR、29Si-SSNMR確認二氧化矽成功合成且分別修飾的胺基、乙烯基與甲基分別成功修飾於二氧化矽,再進一步利用SEM與BET確認二氧化矽之表面形貌與孔洞特性,並且利用水滴接觸角與TGA確認修飾不同官能基的二氧化矽,官能基對粉體吸水率的影響。 利用LCR與微波介電量測聚亞醯胺薄膜之低頻介電與高頻介電特性。 研究結過顯示: 疏水性二氧化矽介孔粉體導入聚亞醯胺薄膜會有效導致聚亞醯胺薄膜吸水率的下降(水的介電常數為80),最後導致聚亞醯胺薄膜在高頻及低頻時都同時具有較低的介電常數與介電損失,最後測試材料基本之熱性質與光學性質。

並列摘要


In this research dissertation, polyimide (PI) hollow spheres and inorganic mesoporous silica were incorporated into PI membrane to prepare the PI membrane with lower dielectric constant and dielectric loss at high/low frequency application. This dissertation is mainly divided into two parts: In the first part, a series of porous polyimide composites containing microscale, polyamic acid hollow spheres (PAAHS) or polyimide hollow spheres (PIHS) were synthesized and characterized. The microscale hollow spheres were produced using amino-modified silica (AMS) particles with diameter of ∼1 μm through a base-catalyzed sol-gel route. The as-synthesized AMS particles were then characterized through Fourier-transform IR, 13C-NMR (NMR), and 29Si-NMR spectroscopy. The prepared core-shell particles were immersed into a 1 wt.% of HF solution for 24 h to remove inner part of silica core, leading to the formation of hollow spheres of polemic acid/polyimide. These hollow spheres (PAAHS/PIHS) were characterized by SEM and TEM. Based on SEM observations, the PAAHS/PIHS showed dispersion capability in the polymer matrixes. It should be noted that the incorporation of PI hollow sphere into PI membrane led to a slightly decrease in dielectric constant and significantly reduced in thermal conductivity based on the LCR and transient plane source measurements, respectively. The second part, a series of surface modify silica (ARS-NH2, AMS-NH2, ARS-C=C, AMS-C=C, ARS-CH3, AMS-CH3) was prepared from the silsesquioxane precursor MTMS, VTMS, APTES and TEOS, that was synthesized by the co-condensation of TEOS with silsesquioxane precursor in the presence or absence of glucose structure-directing agents. The as-synthesized silica materials were characterized by Fourier-transform IR, 13C-SSNMR, and 29Si-SSNMR spectroscopy. On the other hand, a series of PI/silica composite materials have been successfully prepared by two-step method polymerization in the presence of ARS or AMS with ODA and BPDA. It should be noted that the as-synthesized PI/hydrophobic mesoporous silica composite membranes led to a significantly reduced dielectric constant and dielectric loss at high/low frequency application on the LCR and open microwave resonator measurements.

參考文獻


[118] 徐柏軒, 電活性中孔洞奈米金複合材料的製備與電化學感測之應用研究, 中原大學化學系 碩士論文, (民國102年).
[2] I. Antanavičiūtė, L. Šimatonis, O. Ulčinas, A. Gadeikytė, B. Abakevičienė, S. Tamulevičius, V. Mikalayeva, V.A. Skeberdis, E. Stankevičius, T. Tamulevičius, Femtosecond laser micro-machined polyimide films for cell scaffold applications, Journal of Tissue Engineering and Regenerative Medicine, DOI:10.1002/term.2376 (2017).
[3] S. Cho, E. Lim, Electrical and optical analyses of trapping phenomenon with temperature dependence of organic device, Organic Electronics, 50 (2017) 397-402.
[4] N.P. Klochko, V.R. Kopach, I.I. Tyukhov, G.S. Khrypunov, V.E. Korsun, V.O. Nikitin, V.M. Lyubov, M.V. Kirichenko, O.N. Otchenashko, D.O. Zhadan, M.O. Maslak, A.L. Khrypunova, Wet chemical synthesis of nanostructured semiconductor layers for thin-film solar thermoelectric generator, Solar Energy, 157 (2017) 657-666.
[5] L. Tian, C. Zhang, X. He, Y. Guo, M. Qiao, J. Gu, Q. Zhang, Novel reusable porous polyimide fibers for hot-oil adsorption, Journal of Hazardous Materials, 340 (2017) 67-76.

延伸閱讀