透過您的圖書館登入
IP:3.144.175.178
  • 學位論文

二硫化鉬/綠色石墨烯異質接面之光電特性研究

The Study on Optoelectronic Characteristics of MoS2/Green Graphene Heterojunctions

指導教授 : 温武義
共同指導教授 : 蔡東昇(Dung-Sheng Tsai)
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


我們成功利用化學氣相沉積直接成長二硫化鉬(MoS2)並與綠色石墨烯(以樟腦為碳源)形成異質接面。根據拉曼光譜分析,MoS2與綠色石墨烯的層數分別是具有雙層與單層結構。在逆向偏壓 10 V,光強為112 W/cm2照射下,MoS2/綠色石墨烯異質接面之光偵測器的光暗電流比 (PDCR)為11。在小偏壓操作下(-1 V),光響應頻譜的響應範圍為300 nm到1200 nm,其UV光 (300 nm)、可見光(550 nm)、短波近紅外線(800 nm)與長波近紅光線(1200 nm)響應度分為 2.67、6.13、9.70與0.07 A/W。同時,MoS2/綠色石墨烯光偵測器隨時間的光暗電流轉換可達到90/100 μs (上升/下降時間),暗示著超快的光響應速度。此外,在不同工作溫度環境下(從300 K到550 K),光暗電流比從11逐漸下降至0.1,顯示MoS2/綠色石墨烯光偵測器可操作在高溫的工作環境。 綜合以上結果,MoS2/綠色石墨烯之異質接面有望應用在下一世代具環保製程的寬頻、快速響應與耐高溫之光感測元件上。

關鍵字

二硫化鉬

並列摘要


MoS₂ was grown directly to form a heterojunction with green graphene (using camphor as a carbon source) by chemical vapor deposition successfully. According to Raman spectrum, the layer number of MoS2 and green graphene are two and one, respectively. At -10 V, the photo to dark current ratio (PDCR) of the photodetector (PD) based on MoS2/green graphene heterojunction is 11 under light intensity of 112 W/cm2. Under small bias (-1 V), the photoresponse region is form 300 nm to 1200 nm and the responsivity of UV (300 nm), visible light (550 nm), short-wave NIR (800 nm) and long-wave NIR (1200 nm) are 2.67, 6.13, 9.70 and 0.07 A/W. At the same time, the photo and dark current as a function of time show the rise/fall time of 90/100 μs, indicating the ultra-fast photoresponse speed. Furthermore, at different working temperature (from 300 K to 550 K), the PDCR decrease from 11 (300 K) to 0.1 (550 K), showing that MoS2/green graphene PD could be operated at high temperature working environment. Based on the above results, the MoS2/green graphene heterojunction with environmentally friendly processes, holds promise for the next-generation optical devices with broadband, fast optical respons and high working temperature.

並列關鍵字

MoS2

參考文獻


參考文獻
[1] Cai, Z.; Liu, B.; Zou, X.; Cheng, H. M., Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures, Chem. Rev. 2018, 118, 6091-6133.
[2] Tang, L.; Tan, J.; Nong, H.; Liu, B.; Cheng, H. M., Chemical Vapor Deposition Growth of Two-Dimensional Compound Materials: Controllability, Material Quality, and Growth Mechanism, Acc. Mater. Res. 2020, 2, 36-47.
[3] Parashar, U. K.; Bhandari, S.; Srivastava, R. K.; Jariwalab, D.; Srivastava, A., Single Step Synthesis of Graphene Nanoribbons by Catalyst Particle Size Dependent Cutting of Multiwalled Carbon Nanotubes. Nanoscale 2011, 3, 3876-3882.
[4] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films, Science 2004, 306, 666.

延伸閱讀