透過您的圖書館登入
IP:18.118.28.11
  • 學位論文

資料探勘技術於不孕症問題之分析與應用

Data Mining in Infertility Problems

指導教授 : 白炳豐
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


性開放、人工流產合法化、晚婚、工作壓力、..等因素,以致我國每7~10對夫妻當中,就有一對不孕症症狀。不孕症是人類生殖系統的一種疾病;若夫妻在一年內有規律的性行為,且無避孕的情形下仍無法受孕時就可稱為不孕。 本研究運用行政院衛生署國民健康局之人工生殖資料庫探勘國人的人工生殖資料,建立一套人工生殖資料預測模型。並且探討人工協助生殖資料庫中不孕症之重要因子,並期望在未進行手術前,由本系統提供醫師術前評估及人工生殖手術方法之選用,以提昇懷孕成功率。 以往婦產科醫師針對不孕病患進行診斷時,大部份皆依據各醫生之經驗做出決策判斷。本文以醫師經驗法則、判別分析(DA)、羅吉斯迴歸分析(LOGISTIC)、…等方法,對醫師經驗法則資料進行重要屬性挑選,透過粗略集合理論(RST)、判別分析(DA)、…等,比較分類之結果。經實驗分析後,針對懷孕結果預測、生產結果預測、新生兒體重預測,其準確率皆有九成以上之準確度。以期能提供給醫師不孕症患者相關診斷時的的決策參考。

並列摘要


In Taiwan, factors such as sex liberation, legalization of artificial abortion, late marriage and work stress have caused infertility in one out of every seven to ten couples. Infertility is a disease of the human reproductive system; it is defined as the incapability in achieving pregnancy in spite of determined attempts by heterosexual intercourse without contraception within a one year period. This research employs the artificial reproduction database from the Bureau of Health Promotion (Department of Health, R.O.C.) and explores the artificial reproduction data of the general public. In addition, a set of data prediction model for artificial reproduction is established and the significant factors of infertility in the assisted reproduction database are investigated. This system is expected to provide the physicians with preoperative analysis and decision for surgical procedures in assisted reproduction, which would improve the conception rate. Previously, obstetricians and gynecologists generally make decisions based on their previous experience when diagnosing infertile patients. This research adopts methods including doctor’s rule of thumb, Discriminant Analysis and Logistic Regression Analysis to select the important attributes from the data for doctor’s rule of thumb. Subsequently, the results for the categorization are compared through Rough Set Theory (RST), Discriminant Analysis (DA) and etc. After the experimental analysis, the accuracy rate for pregnancy prediction, reproduction prediction and infant weight prediction are above ninety percent. Moreover, this research is expected to provide reference for physicians when they are making decision on related diagnosis for infertile patients.

參考文獻


[1]張教授不孕症及婦產科診療室,http://tw.myblog.yahoo.com/shawnchang42/
[2]萬芳醫院婦產科,http://www.wanfang.gov.tw/OBSGYN/search/repro/infertility.htm
[3]民國八十七年~九十五年台灣地區人工生殖施行結果分析報告,衛生署國民健康局。
[4]王懷麟,人工生殖中之醫病關係初探,長庚大學醫務管理學研究所,2005。
[5]白炳豐、李鳳娟、張瓊云、吳燕秋、廖婉婷,粗略集合論於鳥種判識法則之應用,中華民國戶外遊憩協會,第二十一卷 4期 頁數93-108

被引用紀錄


宋亭緻(2013)。結合資料探勘技術與流網路圖於人工生殖診斷方法之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2013.00093
魏崢(2010)。應用資料探勘技術於汽車維修業之研究〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0028-0308201015144700
黃珮婷(2013)。應用資料探勘於預測原廠汽車零件壽命之研究〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0028-0208201314591100

延伸閱讀