透過您的圖書館登入
IP:18.116.10.201
  • 學位論文

非牛頓及奈米流體於不同幾何條件之流動與熱傳遞研究

Flow and Heat Transfer of Non-Newtonian and Nanofluids under Various Geometric Configurations

指導教授 : 劉一中

摘要


第一章介紹奈米流體的一般範疇應用及幾何基礎數學方程式。在第二、三章,於垂直的雙通道渠道採用流量平衡控制方式,探討慣性力、浮力、多孔介質、微極流體及黏性耗散因素的影響。第四章研究分析磁流體拉伸薄層在磁性力、黏性耗散、非均勻的熱源及熱輻射因素下的流動與熱傳遞影響。第五章,濃度方程式採用滑動機制中的兩個重要參數:布朗擴散和熱泳效應,分別於旋轉圓盤驅動和三維雙向拉伸表面驅動系統,並以布朗擴散及熱泳效應作為熱、質傳遞率相關性的迴歸分析。在第六章研究中,採用不同類型的奈米顆粒物理性質條件,分別為銀、銅、氧化鋁、二氧化鈦搭配水為基液的奈米流體,將奈米流體體積分率應用於控制方程式,探討奈米流體於旋轉圓盤模型和三維雙向拉伸表面驅動系統下之影響。經由上述研究結果分析,而討論各項物理變化情形:速度、溫度、旋轉速度、濃度、動力及熱邊界層厚度、表面摩擦係數及熱、質傳遞率的論證結果。第七章總結上述研究結果並提供未來研究延伸之建議。

並列摘要


Chap. 1 introduces the general applications in nanofluid and useful general mathematic formulae onto geometric configurations. In Chaps. 2 and 3, by taking the balance of the flow rate in a vertical double-passage channel, the effect of inertia, buoyancy, porous medium, micropolar fluid and viscous dissipation have been investigated via the control of flow rate. Chap. 4 studies the effect of magnetic field, viscous dissipation, non-uniform heat source and/or sink and thermal radiation on flow and heat transfer in a hydromagnetic liquid film over an unsteady stretching surface with prescribed heat flux condition. Taking into account of the Brownian diffusion and thermophoresis of slip mechanisms in the concentration equation, Chapter 5 investigates the flow, heat and mass transfer in two geometric configurations: I. Near a Rotating Disk and II. Over a Bi-directional Stretching Surface and the results illustrate that the correlations of physical parameters for the heat and mass transfer rates have been developed on a regression analysis. With the nanoparticle volume fraction being specified, different types of nanoparticles, namely, silver Ag, copper Cu, alumina Al2O3, and titanium TiO2 with water as the base fluid are considered in Chapter 6 under two geometric configurations which are III. Near a Rotating Disk and IV. Over a Bi-directional Stretching Surface. The velocity, temperature and concentration profiles, the hydrodynamic and thermal boundary layer thickness, the surface friction coefficients, heat and mass transfer rate are demonstrated and discovered with the effect of parameters. Chap. 7 concludes the results of the present studies and gives suggestion for the future works.

參考文獻


A. Barletta (1998), Laminar mixed convection with viscous dissipation in a vertical channel, Int. J. Heat Mass Transfer, 41, 3501–3513.
A. Barletta (1999), Heat transfer by fully developed flow and viscous heating in a vertical channel with prescribed wall heat fluxes, Int. J. Heat Mass Transfer, 42, 3873-3885.
A. Barletta (1999), Laminar convection in a vertical channel with viscous dissipation and buoyancy effects, Int. Comm. Heat Transfer, 26, 153–164.
A. Barletta, E. Zanchini (1999), On the choice of the reference temperature for fully-developed mixed convection in a vertical channel, Int. J. Heat Mass Transfer, 42, 3169–3181.
A. C. Eringen (1964), Simple microfluid, Int. J. Eng. Sci., 2, 205–217.

延伸閱讀