透過您的圖書館登入
IP:3.138.69.45
  • 學位論文

以紫外光輔助液相沉積法成長γ-APTES/SiO2生醫奈米複合薄膜製作陣列型多巴胺生物感測器

Fabrication of array-type dopamine biosensors using UV-assisted liquid phase deposition for growing γ-APTES/SiO2 bionanocomposite

指導教授 : 林錦正
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文旨在研究利用紫外光輔助液相沉積法(Liquid phase deposition,LPD)沉積3-氨基丙基三乙氧基矽氧烷(3-Aminopropyltriethoxysilane,γ-APTES)混合聚二甲基矽氧烷(Poly-dimethylsiloxane,PDMS)處理之二氧化矽奈米顆粒(Silica nanoparticles,NPs)感測薄膜,製作超靈敏的多巴胺感測器。在論文中我們探討不同重量比例的NPs/γ-APTES或不同體積比例的γ-APTES/C2H5OH所成長的感測薄膜特性,以及在製程中使用紫外光(Ultraviolet,UV)照射對薄膜特性的影響。我們使用液相沉積法將感測薄膜沉積於多晶矽線(Poly-silicon wire,PSW)上,是希望能批次製作陣列型多巴胺感測元件。在分析上首先以原子力顯微鏡(Atomic force microscopy,AFM)來觀察薄膜表面形貌及進行垂直漏電流分析,再針對元件進行多巴胺感測靈敏度分析。 由實驗的結果我們可以發現, NPs/γ-APTES的重量比例在0%至2%之間,NPs比重增加γ-APTES+NPs感測薄膜垂直漏電流值下降,而崩潰電壓則增大;而γ-APTES/C2H5OH體積百分比在0.01%至1%之間,當NPs/γ-APTES比例值增加γ-APTES+NPs薄膜漏電流及崩潰電壓特性皆變差。另外從漏電流分析中還可以了解到,以UV光照射處理之γ-APTES+NPs感測薄膜,會強化γ-APTES與NPs的鍵結。我們藉由在液相沉積期間不同階段以UV光照射來沉積不同感測薄膜並製備多巴胺感測元件。實驗結果發現,在沉積起始階段以UV光照射能獲得最佳靈敏度的薄膜,其多巴胺感測濃度的線性範圍為1×10-3 M~1×10-20 M,最低的偵測極限達1×10-20 M。如此高的靈敏度應該是源自UV光的輔助使二氧化矽奈米顆粒與γ-APTES能在乙醇溶液中更有效率地鍵結而沉積更緻密的薄膜。

並列摘要


The aim of this thesis focuses on the film deposition of 3-Aminopropyltriethoxysilane (γ-APTES) mixed with Poly-dimethylsiloxane (PDMS)-treated silica nanoparticles (NPs) by ultraviolet(UV)-assisted liquid phase deposition (LPD) method for sensor applications, investigating the effects on dopamine sensing film property in different weight ratio of NPs/γ-APTES, different concentration ratio of γ-APTES/C2H5OH, and ultraviolet (UV) light exposure. The reason we deposit the γ-APTES+NPs nanocomposite thin film on poly-silicon wire (PSW) by LPD method is that we might fabricate the dopamine sensor array by batch production. We characterize first the surface morphology and measure the vertical leakage current by using atomic force microscopy (AFM), and then analyze the sensitivity of dopamine sensor array. It is found that the vertical leakage current of the sensing film of γ-APTES+NPs decreases with the value of NPs/γ-APTES in the range of 0% to 2%, and the breakdown voltage increases with the value of NPs/γ-APTES corresponding to the same range. The vertical leakage current of the sensing film of γ-APTES+NPs increases with the value of (NPs+γ-APTES)/C2H5OH in the range of 0.01% to 1%, and the breakdown voltage decreasees with the value of (NPs+γ-APTES)/C2H5OH corresponding to the same range. Furthermore, from the analyses of the vertical leakage current, we realize that a UV illumination process might strengthen the bonding between the γ-APTES and the NPs, resulting in lower leakage current and higher breakdown voltage of the film. We prepare the sensing films on the PSWs with different properties through changing the stage of UV illumination during LPD, and fabricate the dopamine sensor array. From the experimental results, we find that the γ-APTES+NPs prepared by UV exposure at the initial stage of LPD process shows the best performance with a very wide linear range and an extremely high sensitivity in dopamine detections. The linear range is from 1×10-3 M~1×10-20 M, and the low detection limit is down to 1×10-20 M. It is believed that the highly sensitive feature is attributed to the UV-assisted bonding between the γ-APTES and the silica NPs in the ethanol solution, which results in a dense γ-APTES+NPs film in the following LPD process.

參考文獻


參考文獻
[1] Kenzo Maehashi, Taiji Katsura, Kagan Kerman, Yuzuru Takamura,Kazuhiko
Matsumoto, and Eiichi Tamiya (2006) ,Label-Free Protein Biosensor Based on
Aptamer-Modified Carbon Nanotube Field-Effect Transistors.
[2] Koji Nishida, Hiroyuki Sakaue, and Takayuki Takahagi (2007) , Immobilization of Gold Nanoparticles on Silanized Substrate for Sensors Based on Localized Surface Plasmon Resonance, e-Journal of Surface Science and Nanotechnology.

延伸閱讀