透過您的圖書館登入
IP:3.149.239.110
  • 學位論文

功能性磁性奈米顆粒於分析磁泳上的應用

Study of Functional Magnetic Nanoparticles for Analytical Magnetapheresis

指導教授 : 傅傳博
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文係關於製備功能性磁性粒子(Functional magnetic particles )並 結合分析磁泳技術(Analytical magnetapheresis)做為生化分離上之應用研 究。主要利用化學共沉澱方法(Co-precipitating)來製備磁性粒子,再對磁 性粒子以高分子修飾粒子表面,所修飾磁性粒子表面之官能基為NH2,最 後採用粒徑分析儀(Photon Correlation Spectroscopy;PCS)、原子力顯微 鏡(Atomic Force Microscope;AFM)、X 射線繞射儀(X-ray diffractometer; XRD)、超導量干涉磁量儀(Superconducting Quantum Interference Device Magnetometor;SQUID)、傅立葉轉換紅外線光譜儀(Fourier Transfer Infrared;FT-IR)鑑定。本研究成功製備40 ± 5 nm、100 ± 8 nm、250 ± 13 nm 及310 ± 25 nm 之Fe3O4 粒子,可在將磁性粒子表面用高分子包覆Fe3O4 其粒徑會有明顯改變,其平均粒徑大小為80 ± 6 nm、204 ± 18 nm、402 ± 40 nm、862 ± 60 nm、1948 ± 130 nm。 再將鏈黴抗生素蛋白(Streptavidin)或免疫球蛋白(IgG)固定在修飾 的四氧化三鐵(Fe3O4)表面上,將蛋白質與磁性顆粒進行共價鍵鍵結;再 將生物素( d-Biotin ) 或蛋白質A( Protein A) 鍵結在聚丙烯酰胺 (polyacrylamide)載體上,使用分析磁泳技術(Analytical magnetapheresis) 做個簡單生化分離上之測試研究。探討磁性載體種類、流速、顆粒數目在 分離上的應用。

並列摘要


Analytical magnetapheresis has become a useful technique for analyzing magnetically susceptible particles. Magnetic particles (Fe3O4) were prepared by co-precipitating. The surface modifications of Fe3O4 were studied with polymer and NH2, , scanning electron microscope (SEM) , photon correlation spectroscopy (PCS) , atomic force microscope (AFM) , x-ray diffraction (XRD) , superconducting quantum interference device magnetometor (SQUID) and fourier transfer infrared instruments (FT-IR) were used for analysis. The sizes of magnetic nanoparticles were : Fe3O4 = 40 ± 5 nm、100 ±8 nm、250 ± 13 nm 及310 ± 25 nm and polymer coated Fe3O4 = 80 ± 6 nm、204 ± 18 nm、402 ± 40 nm、862 ± 60 nm、1948 ± 130 nm . Streptavidin or IgG was bound onto Fe3O4 magnetic nanoparticles. Biotin or Protein A was covalently bound onto polyacrylamide microparticles, and applied to magnetic carries for bioseparation in analytical magnetapheresis. We studied experimental parameters of magnetic particles、flow rate and particles number for analytical magnetapheresis.

參考文獻


1. http://www.nano.gov/
2. Holger, B.; Martin, S. "The Lotus effect at the nanometer scale: Capillary
evaporation in rectangular nonwettable grooves" Fluid Phase Equilibria,
(2007),256,137–144
3. Salata, O.V. "Applications of nanoparticles in biology and medicine" Journal

延伸閱讀